


Fyziklani 2026 20th year 13th of February 2026

Solutions of problems

1



Fyziklani 2026 20th year 13th of February 2026

Problem AA . . . summer drink
Consider a cylindrical glass with an internal radius of R = 3.0 cm and an ice cube with a side
length of a = 2.5 cm floating on the surface. The height of the liquid level, including the
floating ice, is h = 10 cm. By how many centimeters will the level change once the ice cube
has completely melted? Provide a positive value if the level increases and a negative value if it
decreases. Vlado thought that he got lemonade with more ice than water. He was wrong.

The dimensions of the cube are much smaller than the height of the liquid level; therefore, the
cube will float freely on the surface. A floating cube is thus in equilibrium, meaning that the
resultant force acting on it is zero. According to Archimedes’ principle, we have

mg = ρvVpg ⇒ m = ρvVp ,

where m is the mass of the ice cube and Vp is the volume of its submerged part. After placing
the cube into the glass of water, the water level rises by

∆h0 = Vp

πR2 ,

from which it follows that the height of the water level before inserting the ice cube was h0 =
= h− ∆h0.

During the melting of the cube, its mass is conserved; therefore, the water level increases
by

∆h1 =
m
ρv

πR2 =
ρvVp

ρv

πR2 = Vp

πR2 = ∆h0 .

The height of the water level after the cube has melted is

h1 = h0 + ∆h1 = h− ∆h0 + ∆h0 = h .

The height of the water level, therefore, clearly does not change (∆h = 0). This result holds
in general for an ice “cube” of arbitrary shape, since we did not use any specific geometric
properties associated with a cube in the calculation.

Vladimír Slanina
vladimir.slanina@fykos.org

Problem AB . . . Marek’s ride
A sightseeing tram T3 Coupé equipped with turbo engines is racing through the streets at
breakneck speed. Behind the controls sits nobody other than he. The man. The myth. The
legend. Marek Milička. With every passing second, he approaches a collapsed bridge over the
Vltava river, which has a width of d = 200 m. The remains of the bridge consist of ramps on
both banks, which form an angle of ϑ = 10◦ with the ground. Marek accelerates and. . . he
jumps over the river with the tram, landing successfully on the ramp on the opposite bank. At
what speed was Marek’s tram moving immediately before the jump?

Even such things might happen at a FYKOS camp.
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Denote the initial speed of the tram as v. Since it moves along a ramp, the velocity vector
forms an angle ϑ with the horizontal plane. The horizontal (x) and vertical (y) components of
the velocity are then

vx = v cosϑ ,
vy = v sinϑ .

Let t be the time it takes for the tram to jump over the river. Then we have

vt cosϑ = d .

Moreover, in the vertical direction, the tram will be decelerated by gravity g during the first
half of the time until it reaches zero vertical speed, after which it will be accelerated back
downward to land on the other side with the same vertical speed but in the opposite direction.
Thus,

v sinϑ− g
t

2 = 0 .

From this equation, we can solve for t and substitute it into the previous equation:

t = 2v
g

sinϑ ⇒ 2 sinϑ cosϑv
2

g
= d .

Using the identity sin 2ϑ = 2 sinϑ cosϑ and rearranging, we obtain for the speed v

v =

√
gd

sin 2ϑ
.= 75.7 m·s−1 .= 272.7 km·h−1 .

Petr Sacher
petr.sacher@fykos.org

Problem AC . . . don’t judge a fish by its ability to run
A rabbit and a fish compete in a race in which the rabbit runs and the fish swims. They start
at the same time and travel a distance of s = 500 m downstream. Then they turn around and
return to the starting point. The river has a current speed of u = 1.0 m·s−1. The rabbit runs
at the same speed as the fish swims, which is v = 10 m·s−1. What is the difference in their
finishing times? Provide a positive value if the rabbit finishes first, and a negative value if the
fish finishes first. Lego taught about motion in a medium.

The hare’s time will be simply 2s/v = 100 s. The fish will have a speed downstream of v + u,
giving a time for this half of the distance of s/(v+u) .= 45.45 s. Upstream, its speed is v−u, so
the time is s/(v− u) .= 55.55 s. Altogether, it will take the fish approximately 101.0 s, meaning
it arrives 1.0 s later than the hare. Since we are to provide a positive result if the hare arrives
first, the answer is therefore 1.0 s.

Šimon Pajger
legolas@fykos.org
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Problem AD . . . angle averaging
Lego had an unpleasant dream: he found himself in the middle of a herd of running horses.
He reasoned that the risk of injury would be minimal if he ran approximately in the same
direction as they did. He therefore wanted to determine their average direction. Using a ref-
erence vector, he measured the directions of several nearby horses relative to it, obtaining the
angles 1◦, 5◦, 2◦, 358◦, 357◦. At what angle with respect to this vector should Lego run so that
it is the average direction of the horses in his vicinity?

While doing research, Lego read about flocking.

If we were to take the arithmetic mean, we would obtain: (1◦ + 5◦ + 2◦ + 358◦ + 357◦)/5 =
= 144.6◦. This result does not make sense, since all horses are running approximately in the
direction of our vector, yet the average direction comes out as 144.6◦. This is, of course, caused
by the discontinuity at zero (where the angles 0◦ and 360◦ are equivalent).

We can resolve it by removing this jump and taking the angles from the interval (−180◦, 180◦).
Then we obtain the average (1◦ +5◦ +2◦ +(−2◦)+(−3◦))/5 = 0.6◦, which is already a plausible
value (and sufficient for the purposes of our problem).

The procedure from the previous paragraph works only in the case when the directions are
indeed close to one another. If, for example, we had a significantly larger data set covering
various directions more uniformly, we could no longer average them so simply. In such a case,
the following procedure is used: we compute the average sine and the average cosine of the
angles (these functions are continuous and have no jumps), and we obtain the resulting mean
angle as the arctangent of their ratio. In our case, it would read like this:

arctan
1
5 (sin 1◦ + sin 5◦ + sin 2◦ + sin 358◦ + sin 357◦)

1
5 (cos 1◦ + cos 5◦ + cos 2◦ + cos 358◦ + cos 357◦)

.= 0.6◦ .

Šimon Pajger
legolas@fykos.org

Problem AE . . . vive la révolution
The guillotine has a blade of mass m that slides along the grooves of two vertical, opposing
beams as it falls. The coefficient of friction between the blade and the beams is k, and the force
between each beam and the blade is F . An energy E is required to sever the head. Determine
the minimum height of the guillotine when accounted for energy lost due to friction.

Peter studied the history of France and watched a guillotine demonstration.

According to the problem statement, all energy expended in slowing down the blade due to
friction is converted into heat. Therefore, the total required initial potential energy will equal
the sum of the desired kinetic energy E and the work done by friction. This work can be
calculated as the sum of the frictional forces kF on both beams multiplied by the distance h
over which the forces act. Altogether, this gives 2kFh. Note that, although the normal force F
acts on each of the two grooves on opposite sides of the blade, the resulting prefactor is only 2,
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not 4, because the frictional force does not depend on the contact area. Now it is sufficient to
write the required potential energy of the blade mgh in the equation

mgh = E + 2kFh ,
(mg − 2kF )h = E ,

h = E

mg − 2kF .

Therefore, the guillotine must be at least h = E/(mg − 2kF ) high.

Jakub Kliment
jakub.kliment@fykos.org

Problem AF . . . nacho dip
We have a pile of nachos and a big bowl of dip. The nachos have the shape of an equilateral
triangle with side length a = 5.2 cm. By what percentage will we consume more dip if we
dip the nachos while holding them by a vertex compared to holding them by the midpoint
of a side? In both cases, we hold the nachos so that our fingers remain clean, leaving a length h =
= 0.62 cm undipped. Assume that a constant thickness of dip is collected. Neglect the thickness
of the nachos. Karel was thinking about everything he can’t eat.

Compare the two cases—in the first one, we hold the triangle (nacho) vertically by its vertex; in
the second, we hold it by the midpoint of one side. In both cases, we want to calculate the area
of the part dipped into the dip.

h

a

a

h

Figure 1: Geometry of the nachos after dipping into the sauce in the first (left) and second
(right) case.

Of course, the triangle is dipped on both sides, but since we are interested only in the ratio
of the areas, we will consider only one side of the triangle. Recall that the height of an equilateral
triangle with side a is a sin(60◦) = a

√
3/2, so its area is a

√
3/2 · a/2 = a2√

3/4.
In the first case, the entire triangle (with side a) is dipped except for a smaller equilateral

triangle of height h, whose side is 2h/
√

3. Therefore, the area of the dipped part is

S1 =
√

3
4 a2 −

√
3

4

(
2h√

3

)2

=
√

3
4 a2 −

√
3

3 h2 .
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In the second case, only a portion of the triangle is dipped, shaped as an isosceles triangle
with height a

√
3/2 − h. Its side is therefore 2(a

√
3/2 − h)/

√
3, giving the corresponding area

S2 =
√

3
4

2
(√

3
2 a− h

)
√

3

2

=
√

3
4 a2 − ah+

√
3

3 h2 .

Since we are interested in the percentage by which more dip is used in the first case, we
subtract 100 % from the ratio S1/S2. The resulting expression is

S1 − S2

S2
=

ah− 2
√

3
3 h

2

√
3

4 a
2 − ah+

√
3

3 h
2

= 4h√
3a− 2h

.= 32 % .

Jakub Kliment
jakub.kliment@fykos.org

Problem AG . . . active power plant
The Temelín nuclear power plant has a thermal power output of P = 6.2 GW. Assume that the
average usable energy released in the decay of one nucleus of uranium 235U is E0 = 200 MeV,
and that the entire power output comes from this decay. The molar mass of the isotope 235U
is MU235 = 235 g·mol−1, and its half-life is T = 7.04 · 108 years. The activity of one banana
is A = 15 Bq. How many times greater is the activity of the 235U consumed in t = 1.0 s at the
Temelín nuclear power plant compared to a banana?

This problem is brought to you by the CEZ Group.
David wanted to be active, but he didn’t feel like exercising.

First, we calculate how many uranium 235U nuclei decay in the Temelín nuclear power plant.
In one second, the number of decays will be

N = Pt

E0
≈ 2.1 · 1020 .

We pay attention to the units and note that E0 = 200 MeV = 3.20 · 10−11 J. For the activity,
the formula

A = λN

holds, where λ is the decay constant for which the following holds

λ = ln 2
T

,

where T is the half-life.
By combining these formulas and using the fact that we are interested in the ratio of the

activities of the Temelín nuclear power plant AU and a banana A, we obtain the final result as

AU

A
=

ln 2
T

P t
E0

A
= Pt ln 2
AE0T

= 6.2 · 109 W · 1 s · ln 2
15 Bq · 3.20 · 10−11 J · 2.22 · 1016 s

.= 402 .

The activity of the uranium consumed in the Temelín nuclear power plant is about 402 times
greater than the activity of the banana.

David Škrob
david.skrob@fykos.org
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Problem AH . . . water in the air
A firefighter is extinguishing a fire by continuously spraying the surroundings with a steady
stream of water from a hose from an elevated position. The hose is held so that the nozzle is at
a height h0 = 3.2 m above the ground, onto which the water subsequently falls. Water flows out
of the hose of diameter d = 75 mm with speed v0 = 4.2 m·s−1 at an initial angle α = 35◦ upward
relative to the horizontal plane. What is the mass of water that is present in the air at any
given moment? Karel was thinking about the firefighters and the matriculation water arch.

To determine the volume of water present in the air at any given moment, we first need to
calculate how long each water element remains in the air. Its initial height above the ground
is h0, and its initial vertical velocity is v0y = v0 sinα, so its instantaneous height above the
ground is h(t) = h0 +v0yt−gt2/2. At the moment when the water element reaches the ground,
this height must be equal to zero; it therefore suffices to solve the resulting equation with zero
on the right-hand side for the time t

h0 + v0yt− 1
2gt

2 = 0 ⇒ t =
v0y +

√
v2

0y + 2gh0

g

.= 1.09 s ,

where we have chosen the plus sign because we are interested in a positive value of the time t
(a time in the future). Now that we know the time t, it suffices to determine how much water
enters the air during this time, that is, how much is expelled from the hose. The hose has a flow
speed v0 and a cross-sectional area S = πd2/4, so during the time t, a volume V = Sv0t flows
through it. This volume must be multiplied by the density of water ρ, yielding the desired mass
of water present in the air

M = ρV = ρSv0t = πd
2ρv0

4
v0 sinα+

√
v2

0 sin2 α+ 2gh0

g

.= 20 kg .

Jakub Kliment
jakub.kliment@fykos.org

Problem BA . . . Valentine’s fluorite

a

Ca2+

F−

As Vlado searched for a romantic gift for his girlfriend Julka
before Valentine’s Day, he visited a store with various decora-
tive minerals. He was attracted to fluorite products and thus
began to ponder their mystical properties. Calculate the den-
sity of a fluorite single crystal and express the result to four
significant figures. One unit cell of fluorite CaF2 has a di-
mension a = 5.463 Å. Its crystal lattice is shown in the at-
tached figure. The molar mass of calcium and fluor is MCa =
= 0.040 08 kg·mol−1 and MF = 0.019 00 kg·mol−1, respectively.

This year, it will be flowers again.

A monocrystalline fluorite crystal is formed by the repetition of a large number of unit cells.
By counting the “spheres in the figure”, we find that the unit cell consists of 8 fluorine atoms
and 14 calcium atoms; however, we must realize that each calcium atom located at the center
of a face is shared by two cells and that each calcium atom located at a vertex is shared
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among eight cells. Altogether, we therefore find that, on average, one cell in the entire crystal
contains 8 fluorine atoms and 1 + 4/2 + 8/8 = 4 calcium atoms—this also corresponds to the
fact that the empirical formula of fluorite is CaF2.

To compute the density, it now suffices to determine the ratio of the mass of these 12 atoms
to the volume of the unit cell, that is,

ρ = m

V
= 8mF + 4mCa

a3 = 8MF + 4MCa

NAa3 ,

where NA = 6.022 · 10−23 mol−1 denotes Avogadro’s constant and MCa = 0.040 08 kg·mol−1

and MF = 0.019 00 kg·mol−1 denote the molar masses of the individual elements. Convert-
ing a = 5.463 Å = 5.463 · 10−10 m and substituting, we obtain the result

ρ
.= 3 181 kg·m−3 ,

which agrees with the tabulated value.

Vojtěch David
vojtech.david@fykos.org

Problem BB . . . overturned glass
Imagine a cylindrical glass of height h and base diameter d. Suppose that its center of mass
is at the center of its axis. What is the minimum coefficient of static friction with the surface
required to make it possible to tip the glass over solely by pushing from the side? The push
may be applied at any point, but only horizontally.

Lego broke a glass.

The torque that we must overcome is the torque by which gravity would act (in the case that the
cup is at the tipping threshold) with respect to the point of contact with the surface. Gravity
acts at the center of the cup, so relative to the point of contact, it has a horizontal distance
(lever arm) d/2; this torque is therefore M1 = mgd/2, where we have denoted the mass of the
cup by m.

If we were to push the cup with a force greater than the maximum static friction force,
it would start sliding along the surface, and the coefficient would simultaneously drop to the
coefficient of kinetic friction. The greatest chance to tip the cup over is therefore when we push
with exactly the static friction force, that is, fmg.

At the same time, it matters where we push it. If we were to push the cup at its base, it
is probably intuitive that we would not tip it over. We produce the largest torque when we
push at its highest point, that is, at a height h above the base. Then the pushing force and the
friction force together act on the cup with a torque M2 = mgfh. We obtain the equation

M1 = M2 ,

mg
d

2 = mgfh ,

d

2h = f .

This is therefore the minimum f required to start tilting the cup. However, once we tilt
it, the vertical distance of the point where we push relative to the axis of rotation increases,

8

mailto:vojtech.david@fykos.org


Fyziklani 2026 20th year 13th of February 2026

while at the same time, the horizontal distance of the center of mass from the axis of rotation
decreases. As a result, the f that was sufficient to tilt the cup at least slightly will certainly be
sufficient to overturn the cup completely.

Šimon Pajger
legolas@fykos.org

Problem BC . . . coin on water
A metal coin with density ρ = 2 580 kg·m−3, a radius r = 8.10 mm and a height h = 0.651 mm is
lying on water. Due to surface tension, the coin remains afloat. To what minimum temperature
must the water be heated for the coin to sink? The surface tension of water at a temperature
of 50.0 ◦C is σ50 = 67.92 mN·m−1 and at a temperature of 60.0 ◦C it is σ60 = 66.18 mN·m−1.
Assume that the dependence of surface tension on temperature is linear.

Danka would like to try lying down on the water and not getting wet.

The resultant force caused by the surface tension of water acting on the coin is F = −σl cos θ,
where l = 2πr is the length over which the coin is in contact with the water surface and θ is
the contact (wetting) angle of the water surface relative to the edge of the coin. For the coin
to float on the surface, the force due to surface tension must balance the weight of the coin, so
the following must hold

−2πσr cos θ = mg ,

where m = πr2hρ. Now it is clear that the limiting case with the minimum sufficient surface
tension corresponds to the situation θ = 180◦. From this, we obtain the value of the surface
tension

σ = mg

2πr = rhρg

2 .

The only thing left to do is to calculate the temperature at which water attains this value of
surface tension. If we denote t50 = 50.0 ◦C and t60 = 60.0 ◦C, the linear dependence described
by the values σ50 and σ60 can be written as σ(t) = σ50 + (σ60 − σ50)(t− t50)/(t60 − t50). From
this expression, we solve for the temperature t, which yields step by step

σ50 + (σ60 − σ50) t− t50

t60 − t50
= rhρg

2 ,

t− t50

t60 − t50
=

rhρg
2 − σ50

σ60 − σ50
,

t = t50 +
rhρg

2 − σ50

σ60 − σ50
(t60 − t50) .= 56.8 ◦C .

Jakub Kliment
jakub.kliment@fykos.org

Problem BD . . . prone to procrastination
Duty calls, so Marek grabs it, ties it to a rope of length l = 3.0 m, spins it so that the rope
makes an angle α = 15◦ with the horizontal plane, and releases it from the rope. However, since
duty is persistent, it starts accelerating from rest toward Marek at a = 1.5 m·s−2 the moment it
lands, while Marek has been running away from the impact point with a speed of v = 15 km·h−1
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ever since he released the rope. If Marek is h = 2.0 m tall and holds the rope at this height,
how long after landing will duty catch up with him?

Marek is a man of focus, commitment, and sheer will.

The problem involves a series of intricate calculations that build on one another.
Let us first analyze the situation when Marek was spinning the duty. From the force balance,

we find that the centrifugal force acting on duty was Fo = mg cotα = mv2
t /r, where m is the

mass of duty, g is the gravitational acceleration, vt is the tangential speed of duty, and r is
the radius of rotation, for which r = l cosα holds. We thus obtain the initial speed of the
subsequent horizontal throw as

vt =
√
gl cosα cotα .= 10.3 m·s−1 .

Its initial height was h′ = h − l sinα, and the motion lasted for a time t =
√

2h′/g
.= 0.50 s.

During this time, duty traveled a distance D = vtt
.= 5.14 m, but because it did not move

directly away from Marek, a top view reveals a right triangle with legs r and D. The sought
distance of duty’s landing point from Marek is therefore

d =
√
D2 + r2 .= 5.90 m .

At the moment when Marek released duty, he started running; therefore, when duty starts
running after him, Marek has an initial lead

x0 = vt+ d
.= 7.98 m .

For the time T after which duty catches up with Marek, the following holds:

1
2aT

2 = x0 + vT ,

T = v +
√
v2 + 2a x0

a
,

where we have taken the positive root that makes physical sense.
By substitution into the formulas, we obtain T = 7.1 s.

Marek Milička
marek.milicka@fykos.org

Problem BE . . . Schrödinger’s cat rescue mission
Anička keeps Schrödinger’s cat in a closed box and initially assigns a probability p0 = 50% that
the cat is alive. She worries about the cat, so she makes a deal with a fairy; the fairy casts
a resurrection spell three times vertically downward into the box. Each spell hits the box at
a uniformly random position, independently of the others. The box is rectangular with side
lengths a = 90 cm and b = 75 cm. In top view, the cat can be modeled as a circle of radius r =
= 15 cm, placed at a uniformly random position within the box, that remains stationary during
the casting. If any cast spell hits the cat, it is considered saved. What is the probability of the
cat being alive after the three shots?

Anička is afraid of cats.
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It is more convenient to calculate the probability pn that the cat is not hit—this allows us to
avoid dealing with the case where the cat is hit multiple times. The probability that the cat is
hit is then pz = 1 − pn.

The probability that a single spell hits the cat is equal to the ratio of the area of the cat’s
cross-section to the total area that can be hit. Thus,

pz = πr
2

ab
.

The probability that a single spell does not hit the cat is then

pn = 1 − πr
2

ab
.

For the cat to be dead, it must not be hit, not even once, and must be dead initially. Then

pθ = p0

(
1 − πr

2

ab

)3

,

and the probability that the cat will be alive is calculated as

p¬θ = 1 − p0

(
1 − πr

2

ab

)3
.= 64 % .

Petr Sacher
petr.sacher@fykos.org

Problem BF . . . sphere in a cylinder
Consider a solid homogeneous sphere of radius r and mass m rolling inside a cylindrical cavity
of inner radius R = 3r. The cavity is oriented so that its main axis is parallel to the horizontal
plane, and the gravitational acceleration g acts vertically. Energy losses can be neglected for
a few rotations, and the sphere rolls without slipping. The ratio of the sphere’s speeds at the
lowest point of the motion v1 to the highest point v2 is v1 = 7v2/4 = 1.75v2. What is the
maximum speed vmax reached by the sphere during its motion? Provide the result as a formula
expressed only in terms of the parameters m, g, and r.

Karel wanted to include a picture with the problem, but he was too lazy to draw it.

The sphere inside the cylinder undergoes both translational and rotational motion, which are
coupled because the sphere rolls without slipping. This can be expressed by the relation between
its speed v, radius r, and angular velocity ω

v = rω .

The total kinetic energy of the sphere is the sum of translational and rotational energy:

Ei = 1
2mv

2
i + 1

2Jω
2
i ,

where the index i denotes the situation 1 corresponding to the lowest point of motion and 2 to
the highest point. The moment of inertia J for a solid homogeneous sphere is

J = 2
5mr

2 .
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Thus, the kinetic energy can be rewritten as

Ei = 7
10mv

2
i .

The maximum speed occurs at the lowest point of the trajectory (v1), and the difference
in kinetic energy between the highest and lowest points is given by the difference in potential
energies ∆Ep = mg(h2−h1). The lowest position of the sphere’s center of mass is at height h1 =
= r above the bottom of the cylinder, and the highest position is at h2 = 2R− r = 6r− r = 5r.
Applying the law of conservation of energy yields

7
10mv

2
1 = 7

10mv
2
2 +mg(h2 − h1) ,

v2
1 − v2

2 = 10
7 g(5r − r) ,

v2
1 − 42

72 v
2
1 = 10

7 g · 4r ,

v1 =
√

280
33 gr ≈ 2.91√

gr ≈
√

r

m · 9.12 m·s−1 .

The maximum speed during the motion is thus vmax = v1 =
√

280gr/33 and is independent
of m.

It remains to check that the problem is not a trick, that is, the sphere indeed completes
the full rotation and does not fall. It would fall if the gravitational force exceeded the cen-
tripetal force required for the rotation. Comparing the centripetal acceleration to gravitational
acceleration

acp = v2
2

2r = 320
231g > g ,

where we used R− r = 2r for the radius of rotation, as this is the path the sphere follows. We
see that gravity is not strong enough to pull the sphere down at the highest point, and therefore
not at any other point along the trajectory.

In conclusion, we note that the constants were chosen close to the limit, but the sphere
indeed remains on its path, and the problem was not intended as a trick.

Karel Kolář
karel@fykos.org

Problem BG . . . a ball in hand
We would like to grab a large ball with one hand and hold it underneath. Let us model the
situation as follows. We have N = 5 fingers, so we can act at N points. The friction between
a finger and the ball is f = 0.53. The fingers are arranged symmetrically around the pole of
the ball, which points upward in our gravitational field. What is the smallest zenith angle we
must choose (that is, how close to the pole) so that we can still hold the ball? The mass of the
ball is 550 g, and the normal force that one finger can exert on the ball is 5.6 N.

Jarda never understood how someone could hold a basketball this way.

To hold the ball at rest in the hand, we require that the resultant force acting on it be zero.
Acting downward on it is the gravitational force mg, which must be compensated for by the
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friction force. For each finger, this force has magnitude fF , where F is the force that the finger
exerts perpendicular to the surface of the ball.

Let this force make an angle α with the vertical plane. Then the friction force also makes
an angle α with the horizontal plane and acts against the direction of possible motion of the
ball, that is, toward the pole of the ball (the highest point). The horizontal component of the
friction force is Ff cosα, and the vertical component, acting upward, is Ff sinα.

Now it is important to realize that in the horizontal direction, the components of the friction
force Ff and of the normal force F cancel each other out, because we have distributed the fingers
evenly and symmetrically around the vertical axis passing through the pole of the ball. In the
vertical direction, the aforementioned gravitational force acts, as well as the friction force and
also the vertical component of the normal force F cosα, which acts downward. For the resultant
to be zero, the following must hold:

mg +NF cosα = NFf sinα .

We express sinα in terms of the cosine as
√

1 − cos2 α, substitute, and rearrange:

mg +NF cosα = NFf
√

1 − cos2 α ,

m2g2 + 2mgNF cosα+N2F 2 cos2 α = N2F 2f2 −N2F 2f2 cos2 α ,

m2g2 −N2F 2f2 + 2mgNF cosα+N2F 2 (f2 + 1
)

cos2 α = 0 ,

from which, by solving the quadratic equation (we take the positive solution so that α < 90◦),
we obtain

cosα = 1
2N2F 2 (f2 + 1)

(
−2mgNF +

√
4m2g2N2F 2 − 4 (m2g2 −N2F 2f2)N2F 2 (f2 + 1)

)
,

cosα = 1
NF (f2 + 1)

(
−mg + f

√
N2F 2 (f2 + 1) −m2g2

)
,

cosα = f

√
1

f2 + 1 − m2g2

N2F 2 (f2 + 1)2 − mg

NF (f2 + 1) ,

α
.= 72◦ .

If the angle were larger, the right side of the first equation would be larger than the left
side, and we would easily hold the ball. In the opposite case, we would not hold the ball. By
the equality, we have thus found the sought limiting value.

Jaroslav Herman
jardah@fykos.org

Problem BH . . . nuts and bolts
David once woke up with a strange dream: he wanted to fit a bolt with outer diameter d2 =
= 18.0 mm into a nut with inner diameter d1 = 12.0 mm, both measured at room tempera-
ture troom = 20.0 ◦C. To achieve this, he bought a carafe of liquid nitrogen at a temperature
of TN2

= 77.0 K and placed the bolt inside. To what thermodynamic temperature must he
heat the nut so that they can be screwed together? Neglect any expansion or contraction of
the threads. The thermal expansion coefficient of both objects is α = 345 · 10−6 K−1, and we
assume it is independent of temperature. David told Matyáš about his big dream.
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We want the thermally expanded diameter of the nut to be equal to the thermally contracted
diameter of the bolt. The formula for thermal expansion is

lT = l0(1 + α∆T ) .

Since the dimensions must match, we know that

d1(1 + α(Tnut − Troom)) = d2(1 + α(TN2
− Troom)) ,

where, after rearranging, we obtain

Tnut − Troom =
d2(1 + α(TN2

− Troom))
d1α

− 1
α

and finally, we solve for Tnut:

Tnut =
d2(1 + α(TN2

− Troom)) − d1

d1α
+ Troom

.= 1 420 K .

Matyáš Beran
matyas.beran@fykos.org

Problem CA . . . as quick as snapping your fingers
In the film Avengers: Infinity War, the villain Thanos turns half of the living beings in the
universe into dust with a snap of his fingers. Suppose he achieves this by making all atoms
in the bodies of these organisms unstable with a very short half-life. Within T = 5 s after the
snap, the affected beings decay by p = 99%. What was their half-life?

The other half of the universe died of cancer from the accompanying radiation.

We use the knowledge of the radioactive decay formula,

N(t) = N0e
−λt ,

which yields the number of undecayed particles N at time t, if N0 is the initial number of
particles. The decay constant λ is related to the half-life T1/2 by

λ = ln 2
T1/2

.

At the given time T , the number of decayed particles satisfies the equation

p = N0 −N(T )
N0

= 1 − e
− ln 2

T1/2
T
.

It is now sufficient to solve for the half-life T1/2, leading to a result

T1/2 = ln 2
ln 1

1−p

T
.= 0.75 s .

Petr Sacher
petr.sacher@fykos.org
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Problem CB . . . how a wheel went wandering
Paťo was driving a car uphill along a long, straight, empty road with a constant inclination
angle of α = 3.8◦. Suddenly, he heard a strange sound, looked into the rearview mirror, and
his heart sank: the rear wheel of his car was rolling behind the vehicle. The car, however,
continued on as if nothing had happened, so he started thinking about what to do with the
wheel. Trying to stop it manually would be dangerous, so he decided to wait for it at the place
where it would come to rest. At what distance from the point of detachment does the wheel
stop?

Consider the wheel to be a rigid homogeneous cylinder of mass m = 21 kg and radius r =
= 32 cm. Immediately after detachment, the wheel had a tangential speed v = 90 km·h−1 and
rolled without slipping along the car’s straight path until it came to rest. At the same time, the
wheel is decelerated opposite to the direction of motion by a resistive force of magnitude kFN
acting at the center of mass, where k = 2.4 · 10−2 is a proportionality coefficient and FN is the
normal force exerted by the road on the wheel. Neglect any deformation of the wheel.

Driving seems dangerous to Paťo.

Solution using work and energy
After detaching, the wheel moved with a nonzero speed v; for this reason, we calculate its initial
kinetic energy Ek. This is given by the sum of the translational kinetic energy

Ek,t = 1
2mv

2

representing the translational motion of the wheel’s center of mass; and the rotational kinetic
energy Ek,r describing its rotational motion, for which

Ek,r = 1
2Iω

2 = 1
2

(1
2mr

2
)
v2

r2 = 1
4mv

2

holds. In the previous relation, I = mr2/2 represents the moment of inertia of a solid homoge-
neous cylinder about its axis, and ω denotes the angular velocity of the wheel, for which, due
to the no-slip condition, v = ωr holds.

Without loss of generality, we may choose the zero level of potential energy (of the gravi-
tational field) at the point where the wheel detaches. A resistive force also acts on the wheel;
however, at the moment of detachment, it has done no work yet, since the wheel has not yet
traveled any distance. The total initial energy E1 of the wheel immediately after detachment
is then

E1 = Ek = Ek,t + Ek,r = 3
4mv

2 .

Let us now consider the final state of the wheel when it comes to rest. Its kinetic energy
must necessarily be zero; however, as it moves uphill, the potential energy increases. With
respect to the chosen zero level at the point of detachment, the final potential energy Ep is
given by

Ep = mg∆h = mgs sinα ,

where g = 9.81 m·s−2 is the standard gravitational acceleration and ∆h is the height difference.
We determined this difference from the geometry of the situation using the incline angle α and
the traveled distance s, which we seek. At the same time, the deceleration is also contributed
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to by the resistive force kFN, where the normal force satisfies FN = mg cosα. The resistance is
constant throughout the entire process, and the work W of the resistive force over the distance s
is then

W = kFNs = kmgs cosα .

From the law of conservation of energy, it follows that the entire initial energy E1 must be
converted into an increase of potential energy Ep and into heat given by the work W of the
resistive force:

E1 = Ep +W ,

3
4mv

2 = mgs sinα+ kmgs cosα .

From this, we simply solve for the distance s and, by substituting numerical values, evaluate
the distance over which the wheel comes to rest:

s = 3v2

4g (sinα+ k cosα)
.= 0.53 km . (1)

Solution using forces
Alternatively, the problem can be solved by setting up the force and torque equations of motion.
The resultant of the external forces will decelerate the translational motion of the center of mass,
but at the same time their torques will begin to slow the rotation of the entire wheel. Thus,
these two processes are coupled by the no-slip condition (in this case a = εr for the translational
acceleration a of the center of mass and the angular acceleration ε of the entire wheel), which
is ensured by the static friction force Ft.

In addition to the friction force Ft, the wheel is acted upon by the component of the
gravitational force mg sinα directed opposite to the motion of the wheel, as well as by the
resistive force kFN = kmg cosα of the same direction. When rolling forward, the wheel tends
to slip backward on the surface. Therefore, the friction force Ft then acts in the direction of
motion, exactly opposite to the other forces. If we choose the current direction of rolling of the
wheel as positive, the force equation for the translational motion has the form

ma = −mg sinα− kmg cosα+ Ft . (2)

Similarly, for the rotation of the wheel about its axis, we can set up the torque equation.
Both the gravitational and the resistive forces act at the center of mass lying on the axis, so
their torque is zero. The friction force Ft acts in the plane of the road at the point of contact
with the wheel. Thus, its torque with respect to the wheel axis is, due to the perpendicularity
of the tangent at the point of contact to the radius of the circle (or cylinder), equal to Ftr. We
obtain the torque equation

Iε = −Ftr .

The negative sign of the torque of the friction force follows from the fact that, although the
friction force has the direction of motion of the wheel, it causes rotation in exactly the opposite
(negative) direction. After substituting I = mr2/2 and a = εr, we express the friction force Ft
as

Ft = −1
2ma .
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Substituting into the equation of motion (2), we obtain the acceleration

a = −2
3g (sinα+ k cosα) .

Since the acceleration is constant, we may apply the standard kinematic equations for
uniformly accelerated motion. For the velocity u(t) of the wheel as a function of time (in the
positive direction), we have

u(t) = at+ v = −2
3gt (sinα+ k cosα) + v .

At the time tz when the wheel stops, the velocity is zero (u(tz) = 0). Thus, from the equation
it can be expressed as

tz = 3v
2g (sinα+ k cosα) .

The sought distance s that the wheel travels with uniformly decelerated motion during the
time tz is then

s = 1
2at

2
z + vtz = 1

2

(
−2

3g (sinα+ k cosα)
)( 9v2

4g2 (sinα+ k cosα)2

)
+ 3v2

2g (sinα+ k cosα) =

= − 3v2

4g (sinα+ k cosα) + 3v2

2g (sinα+ k cosα) = 3v2

4g (sinα+ k cosα)
.= 0.53 km ,

which agrees with the result (1).

Patrik Stercz
patrik.stercz@fykos.org

Problem CC . . . Wien filter
The Wien filter is a device used to select from a beam of charged particles only those with
a specific velocity. It consists of two parallel plates between which a uniform electric field of
magnitude E is established, together with a uniform magnetic field of magnitude B that is
oriented perpendicular to the electric field. The particle beam enters the region between the
plates with its velocity perpendicular to both fields. For given values of E and B, at what
velocity will the particles pass through the filter without any change in the direction of their
motion? Petr was attending a lecture on nuclear physics.
We need to express the electric and magnetic force

FE = qE ,

FB = q (v × B) .

In a Wien filter, the directions of the electric and magnetic fields are chosen so that the
forces on a passing particle act exactly in opposite directions. The problem can thus be treated
one-dimensionally; since the particle velocity and B are perpendicular, the vector cross product
reduces to a simple multiplication. For the particle to pass through the filter, its motion must
not be deflected at all, hence

FE − FB = 0 ,
qE − qvB = 0 .
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This gives a simple condition for the particle velocity

v = E

B
.

Petr Sacher
petr.sacher@fykos.org

Problem CD . . . spinning sink
Imagine a sink in the shape of a hollow cylinder with a radius r. At one point along the bottom
edge, water jets out and lands directly at the center of the sink’s bottom. The water reaches
a maximum height h above the surface. What is the maximum angular velocity at which we
can spin the sink together with the nozzle about the cylinder axis so that the water does not
hit the cylinder wall? The FYKOS team visited CosmoCaixa.

As long as the sink is not spinning, we have

r = v0t cosα ,

where r is the sink radius, v0 is the initial speed of the water (with respect to the sink and now
also with respect to the ground), and cosα is the initial direction with respect to the ground.
The time t, during which the water drops are in the air, can be expressed from vertical velocity

0 = v0 sinα− g
t

2 ,

t = 2v0 sinα
g

,

which is in turn related to the reached height h through the law of conservation of energy as

1
2m (v0 sinα)2 = mgh ,

v2
0 sin2 α = 2gh .

From the given parameters, we can therefore express

t =
√

8h
g
.

When we spin the sink with angular speed ω, with respect to the ground, the water drops
acquire an additional horizontal velocity component which is tangential to the motion and has
magnitude v⊥ = ωr.

We know that in the normal direction, the water travels a distance r. However, in order
not to land at the center of the circle but at its edge, it must also travel a distance r in the
tangential direction (this is the distance between the center and the edge in this direction).
Thus, it must hold that

v⊥t = r = ωrt ⇒ ω = 1
t

=
√

g

8h .
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The sought angular speed is therefore

ω =
√

g

8h .

If we were to spin the sink faster, the water would strike the cylinder wall at a nonzero height.

Jaroslav Herman
jardah@fykos.org

Problem CE . . . Titanic
The Titanic is sailing at a speed v = 45.0 km·h−1 toward an iceberg when the ship’s captain
sounds the horn, which emits a sound with frequency f = 440 Hz. After the horn falls silent,
the sound reflects off the iceberg back toward the ship. What frequency f ′ does the captain
hear? If Peter had been the captain, he might have noticed it.

It should be noted that both the Titanic and the iceberg act as transmitter and receiver,
depending on the direction. If the Titanic emits a sound with frequency f , this means that the
Titanic is a source moving at speed v and the iceberg is a stationary receiver, which detects
the sound at frequency

fi = f
cs

cs − v
.

The sound reflects off the iceberg still at frequency fi, so the iceberg behaves as a stationary
source. The Titanic is now moving toward the sound, acting as a moving receiver, and therefore
detects the sound at frequency

f ′ = fi
cs + v

cs
= f

cs

cs − v

cs + v

cs
= f

cs + v

cs − v

.= 473 Hz .

In other words, the iceberg acts like a mirror, so it is as if two Titanics are approaching
each other, the first as source and the second as receiver.

Šimon Pajger
legolas@fykos.org

Problem CF . . . Christmas tree
Martin wanted to get rid of the needles from a Christmas tree by spinning it about
its axis of symmetry with an angular speed ω = 5.5 rad·s−1. Let us approximate
the Christmas tree as a rod of height h = 1.5 m and radius r/2, and five disks
with radii 1r, 2r, 3r, 4r, 5r, where r = 15 cm, with thickness l = 5.0 mm. The
central rod passes through the disks (meaning that they have holes in the center)
and has density ρ = 900 kg·m−3. The disks have half this density. Martin is
interested in how much energy is required to achieve angular speed ω.

The organizers and Martin were waiting for a lecture.

The kinetic energy of rotational motion is Ek = Iω2/2, so we only need to determine the
moment of inertia of the tree I.

Let us ignore the holes in the disks for the moment. The moment of inertia of a solid disk
with mass m and radius R is I = mR2/2. We compute the mass as the product of density
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and volume, so in this case m = (ρ/2)πR2l. Altogether, for a disk of radius R, we obtain the
moment of inertia

I(R) = 1
4πρlR

4 .

Substituting successively R = ir, we obtain the total moment of inertia of the disks

Id =
5∑

i=1

1
4πρl(ir)

4 = 1
4πρlr

4(1 + 16 + 81 + 256 + 625) = 979
4 πρlr

4 .= 1.75 kg·m2 .

We are left with the central rod. It also has the shape of a disk, but with a relatively large
height compared to its radius. The rod itself would have mass ρπ(r/2)2h, but in the regions
where it passes through the disks, we have already included half of its density in the disks. We
therefore have to subtract (ρ/2)π(r/2)25l. Its resulting moment of inertia is thus

Ip = 1
2πρ

r2

4

(
h− 5

2 l
)
r2

4 = 1
32πρ

(
h− 5

2 l
)
r4 .= 0.07 kg·m2 .

We see that Ip ≪ Id ⇒ Ip + Id ≈ Id, which may not be particularly surprising. In any case,
within our accuracy, such an approximation would not be sufficient, so we compute the required
energy as

Ek = 1
2(Ip + Id)ω2 .= 27.5 J .

Šimon Pajger
legolas@fykos.org

Problem CG . . . table oscillation
A body of mass m = 100 g is placed on a plate that undergoes harmonic oscillations in its plane
with angular frequency ω and amplitude A = 3.0 cm. What is the limiting value of ω such that
the plate begins to slip under the body? The coefficient of friction between the body and the
plate is f = 0.60. Pepa tutored mechanics.

The displacement of the plate from its equilibrium position during its oscillatory motion can
be expressed by the standard relation

x = A sin(ωt) .

During such motion of the plate, an inertial force of magnitude |F | = mẍ acts on the body in
the direction opposite to the acceleration ẍ of the plate. The plate begins to slip at the moment
when the magnitude of this force exceeds the maximum friction force. In this limiting case, the
relation holds

mẍ = fmg .

The acceleration of the plate can be determined using a well-known relation for acceleration
in harmonic motion, ẍ = −ω2x, or it can be derived as the second time derivative of the
displacement,

ẍ = −Aω2 sin(ωt) = −ω2x .
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The acceleration’s sign only indicates its direction and can be ignored. The magnitude of the
acceleration of the plate then increases with the magnitude of its displacement; therefore, the
maximum magnitude of this acceleration is

ẍmax = ω2A .

It thus suffices to focus on the case in which the inertial force at the moment of maximum
acceleration just exceeds the value of the friction force. This limiting case occurs for

mω2A = fmg ,

from which we can, by simple algebraic manipulation, express the required minimum angular
frequency as

ω =

√
fg

A

.= 14 rad·s−1 .

Tomáš Kubrický
tomas.kubricky@fykos.org

Problem CH . . . Plato’s current
What is the electric flux through one face of a regular icosahedron (twenty-sided polyhedron)
with charge of magnitude Q located in its center?

Jarda was rolling D20 dice.

The total flux of the electric field through a closed surface is, according to Gauss’s law,∮
E · dS = Q

ε0
.

Since all 20 faces of the icosahedron are identical, the flux through one face is Q/(20ε0), which
is the solution to our problem.

Jaroslav Herman
jardah@fykos.org

Problem DA . . . warming rezistor
Consider a voltage source U = 250 V and a resistor whose resistance varies with temperature
according to R(T ) = R0(1 + α∆T ), where R0 = 5.0 Ω is the resistance at room temperature,
α = 4.9 ·10−3 K−1 is the temperature coefficient of resistance, and ∆T is the difference between
the resistor’s temperature and room temperature. Assume that the resistor’s temperature is
higher than the surroundings by ∆T = βP , where P is the power dissipated in the resistor
and β = 1.5 · 10−2 K·W−1. What is the steady-state current?

Lego built an electric circuit.

The power dissipated in the resistor is P = UI = U2/R. Substituting this into the formula for
the temperature difference, and subsequently into the formula for resistance, we obtain

R = R0 +R0αβ
U2

R
.
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This can be rearranged into a quadratic equation for the resistance:

R2 −RR0 −R0αβU
2 = 0 .

The solutions of this equation are

R1,2 =
R0 ±

√
R2

0 + 4R0αβU2

2 .

The solution with the minus sign yields a negative resistance, which is physically meaningless
and corresponds to an “unstable equilibrium”. Therefore, we take the solution with the plus
sign. The steady-state current is then

I = U

R
= 2U
R0 +

√
R2

0 + 4R0αβU2
=
√
R2

0 + 4R0αβU2 −R0

2R0αβU

.= 32 A .

Šimon Pajger
legolas@fykos.org

Problem DB . . . triple collision
Two identical smooth spheres with radii r = 10 cm lie at rest on a horizontal table with their
centers separated by a distance d = 30 cm. A third identical sphere approaches from a distance
with velocity v = 1.0 m·s−1 along the perpendicular bisector of the segment connecting their
centers. All collisions are instantaneous and perfectly elastic. What will be the velocity of the
incoming sphere after the collisions? Submit a positive result if it moves in its original direction,
and a negative one if it moves in the opposite direction.

Lego wanted to create a problem in Jarda’s style.

Since the spheres are perfectly smooth, there is no friction between them; consequently, they
will exert only normal forces on each other during the collision. This implies that each ini-
tially stationary sphere will move off in the direction given by the line connecting its center
to the center of the incoming sphere. We determine this direction from a right triangle whose
hypotenuse is the connecting line (length 2r) and one leg is half the segment between the sta-
tionary spheres (length d/2). Thus, the direction of motion will make an angle φ with the
direction of the incoming sphere given by

φ = arcsin d

4r .

Furthermore, it is clear from symmetry that after the collision, the incoming sphere will
continue to move either in the direction of its initial velocity or in the exact opposite direction.
Let us denote this velocity as v1 (taking the direction of its initial velocity as positive). Sym-
metry also implies that the two other spheres will have equal speed; let us denote this speed
as v2.

Then, the law of conservation of energy implies
1
2mv

2 = 1
2mv

2
1 + 2 · 1

2mv
2
2 ,

v2 = v2
1 + 2v2

2 .
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And from the law of conservation of momentum

mv = mv1 + 2mv2 cosφ ,
v = v1 + 2v2 cosφ ,

since the momentum components in the perpendicular direction cancel out. We express v1 =
= v − 2v2 cosφ from the law of conservation of momentum and substitute it into the law of
conservation of energy equation

v2 = (v − 2v2 cosφ)2 + 2v2
2 ,

v2 = v2 − 4vv2 cosφ+ 4v2
2 cos2 φ+ 2v2

2 ,

4v cosφ = 4v2 cos2 φ+ 2v2 ,

2v cosφ
2 cos2 φ+ 1 = v2 ,

where we discarded the solution v2 = 0, as this would correspond to a situation where no
collision occurs. The final step is to substitute back into the law of conservation of momentum,
obtaining

v1 = v − 2v2 cosφ = v − 4 cos2 φ

2 cos2 φ+ 1v = 1 − 2 cos2 φ

2 cos2 φ+ 1v .

Trigonometric identities yield cos(arcsin x) =
√

1 − x2, which means

v1 = d2 − 8r2

24r2 − d2 v
.= 0.067 m·s−1 .

Šimon Pajger
legolas@fykos.org

Problem DC . . . Watt’s magnetic governor
Consider a classic Watt governor consisting of a vertical axis to which two massless arms of
length l = 30.0 cm are freely attached at a single common joint. Small spherical weights of
mass m = 100 g are attached to the ends of the arms. When the axis starts spinning, the arms
begin to rise due to the centrifugal force. In our situation, the weights are additionally charged
with identical charges q = 2.00 μC, and the entire system is placed in a homogeneous magnetic
field of hypothetical magnitude B = 750 kT oriented along the axis. At what minimum angular
speed ω can the arms open to an angle of 2ϑ = 90.0◦? Peter is into electromagnetism.

We break down the force acting on a weight into its individual components. In the vertical
direction, only the force of gravity acts on the weight:

Fz = mg ,
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where we have chosen the positive direction of the axis to point downward. In the radial
direction, we must account for the centrifugal, electrostatic, and magnetic force; for these,
respectively, we have

Fod = mω2r ,

Fel = 1
4πε0

q2

(2r)2 ,

Fmag = ±qωrB ,

where r is the distance of the weight from the axis. In deriving the relation for Fmag, we used
the expression for the magnetic force

F = q (v × B) ,

into which we substituted the relation for speed during circular motion v = ωr, and then
realized that the motion takes place in a horizontal plane perpendicular to the magnetic field;
the vector product therefore reduces to an ordinary product, and the resulting vector points
in the radial direction. We must also take into account that we do not know the direction of
the magnetic induction B nor the direction in which the governor rotates. Therefore, we also
do not know the direction of the magnetic force (although from the requirement that we are
looking for the minimum angular speed, we suspect that the governor rotates in such a direction
that the resulting force points radially away from the rotation axis). From geometry, we find
that r = l sinϑ, and therefore the total radial force is

Fr = mω2l sinϑ+ q2

4πε0

1
4l2 sin2 ϑ

± qωlB sinϑ .

For the system to be in equilibrium, the direction of the resultant force must be parallel to
the arm to which the weight is attached. It must therefore hold that

tanϑ = Fr

Fz
,

which, after rearrangement, leads to a quadratic equation

ω2 ± qB

m
ω + q2

16πl3mε0

1
sin3 ϑ

− g

l

1
cosϑ = 0 ,

whose roots are

ω =

∓
(

qB
2m

− 1
2

√
q2B2

m2 − q2

4πl3mε0
1

sin3 ϑ
+ 4g

l
1

cos ϑ

)
= ±2.15 rad·s−1 ,

∓
(

qB
2m

+ 1
2

√
q2B2

m2 − q2

4πl3mε0
1

sin3 ϑ
+ 4g

l
1

cos ϑ

)
= ∓17.1 rad·s−1 .

The problem statement asked for the smallest magnitude of the angular velocity at which the
opening occurs; the correct solution is therefore the smaller magnitude

|ω| = 2.15 rad·s−1 .

Petr Sacher
petr.sacher@fykos.org
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Problem DD . . . overturned train
Grandmother learned about the Coriolis force, and while traveling by train from Prague exactly
due south, she panicked, thinking that the train cars must not travel too fast so that they would
not tip over. The train car has a rectangular cross section of width a = 3 150 mm and height b =
= 4 320 mm, with its center of mass located at the center of the cross section. Prague lies at
approximately 50◦ north latitude. At what minimum speed would the car have to travel? An
estimate is sufficient; relativistic effects can be neglected. Give the result to two significant
figures.
Hint: In a reference frame rotating with angular velocity ω, the Coriolis force acting on a
body of mass m moving with velocity v is given by FCor = −2mω × v.

Petr sat in a train where strange things happened on trains.

If we are interested only in the magnitude of the Coriolis force, it suffices, in the relation given
in the hint, to replace the vector product by the simple product of the magnitudes ω and v and
the sine of the angle between them. The vector ω points along the axis of rotation; however,
geographic latitude is measured from the equator. Let us denote the latitude angle by

ϑ = 50◦ ,

then we can see that the angle between the vectors ω and v is π−ϑ, which, after adjusting the
sine and neglecting the sign that only indicates the orientation of the force, gives the magnitude
of the Coriolis force

FCor = 2mωv sinϑ .

For the car to tip over, the torque by which the Coriolis force acts on it must balance the
torque by which the gravitational force acts on it. It is easy to see that the gravitational force
produces its maximum torque at the moment when the car is not tilted at all. This means
that it suffices to overcome the gravitational force only at the onset of tipping; afterward, its
influence will always be smaller. If we denote by α the angle between the diagonal of the car’s
cross section and the vertical axis, the following must hold:

mg sinα = 2mωv sinϑ cosα .

If we rearrange this relation, use tanα = a/b, and express ω = 2π/T , where T is the period of
the Earth’s rotation (that is, approximately 24 h), we obtain

v = gT

4π
a

b

1
sinϑ

.= 64 km·s−1 .

Petr Sacher
petr.sacher@fykos.org

Problem DE . . . Where to with it?
Jan Neruda is fed up with his old straw mattress. Instead of gradually scattering it from his
trouser legs during walks, he decides to bundle the mattress into a small ball of mass m = 20 kg
and launch it into the Vltava River using a homemade catapult from his house at Konviktská
Street No. 30. The river is at a distance L = 250 m, and the middle 13/15 of the trajectory is
obstructed by houses of height h = 18 m, which he must shoot over. The final step is to choose
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a sufficiently stiff spring for the catapult to power the launch. What is the minimum spring
constant required if the catapult allows a maximum extension of x = 1.25 m? The catapult can
be fired at any angle. Petr read Neruda’s famous feuilleton “Kam s ním?”.

Let us consider the parabolic trajectory along which the straw mattress will fly. If we place the
origin of our coordinate system at the midpoint of the distance it must cover, we can write the
equation of the trajectory in the form

y = −al2 +H ,

where l is the horizontal distance from the midpoint of the trajectory, H is the maximum height
reached by the straw mattress, and a is a parameter determining the shape of the parabola.
Because the straw mattress is on the ground at the beginning, we have

0 = −a
(
L

2

)2
+H .

For the straw mattress to clear the row of houses in its path while reaching the smallest possible
height H, it must hold that

h = −a
(13

30L
)2

+H .

We therefore obtain the system of equations

a = 225h
14L2

.= 4.63 · 10−3 m−1 ,

H = 225h
56

.= 72.32 m .

For the straw mattress to reach the height H, its initial vertical velocity must be such that
(due to the law of conservation of energy)

1
2mv

2
y = mgH ⇒ vy =

√
2gH .

At the same time, however, the straw mattress must initially have a suitably large horizontal
component of velocity; if it has an incorrect value, it will follow a trajectory different from the
one we desire. The correct horizontal velocity is such that the total velocity is tangent to the
trajectory. We know that the tangent of the tangent line to a graph at a given point equals the
derivative at that point. For our derivative in general, and specifically at the beginning of the
trajectory, we have

y′ = −2al ⇒ y′
(

−L

2

)
= aL ,

Using the property of the derivative mentioned above, we obtain

vy

vx
= aL ⇒ vx =

√
2gH
aL

.

Let us pause here to consider one more idea: if it were the case that∣∣∣vy

vx

∣∣∣ < 1 = tan π4 ,
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that is, if a shot that just barely cleared the houses in its path were launched at an angle
smaller than 45◦, it would be more advantageous to launch the straw mattress simply at an
angle of 45◦, because at this angle the ratio of range to required energy is optimal. In our case,
however, |aL| .= 1.16 holds, which means that we want to launch the bundle at an angle for
which equality holds between the ratio of vx, vy, and aL.

For the catapult to achieve the required range, it must be possible to “store” its entire initial
kinetic energy in the stretched spring. Using the expression for the potential energy of a spring,
we therefore have

1
2m
(
v2

x + v2
y

)
= 1

2kx
2

and from this, by expressing the spring constant k and substituting, we obtain

k = 225
28

mgh

x2

(
1 + a2L2

a2L2

)
.= 32 kN·m−1 .

The problem is inspired by “Kam s ním—where to with it”, a famous column by Jan Neruda,
in which the author discusses how to get rid of an old straw mattress, at a time when there was
nowhere to throw it away. The author suggests, for example, gradually scattering the straw
from one’s trouser legs.

Petr Sacher
petr.sacher@fykos.org

Problem DF . . . hellish
In the deepest abyss of Hell, in the very ninth circle, Lucifer himself with three faces is embedded
in the middle of a frozen surface, holding a traitor in each mouth. Around him, a pentagram
is drawn on the ice, consisting of a circle of radius R in which a regular five-pointed star is
inscribed. A charge Q is located at three of the star’s vertices, and a charge q of the same sign
is located at three of the star’s intersections. What must be the ratio Q/q so that the electric
field at the center of the pentagram, where Lucifer is located, is zero?

Peter read Divine comedy.

From the problem statement, we know that the charges Q are at a distance R from the center
of the pentagram. However, we also need to determine the distance of the charges q. They
lie on a smaller circle; let us denote its radius as a. The intersections of the pentagram form
a regular pentagon. Dividing it into five triangles, we find that each triangle has a vertex
angle α = 360◦/5 = 72◦ at the center of the circle, and the angle at the remaining two vertices
is β = 54◦.

Consider the figure formed by one tip of the star and the adjacent triangle from the inner
pentagon. The sum of the altitudes of these triangles is exactly R, and all interior angles of
the figure can be determined from the known α and β. Using some trigonometry and algebra,
we can express a as

a = R

tan 72◦ cos 54◦ + sin 54◦ .

Let us consider how the charges are arranged. On one circle, the charges can be positioned
either such that all three are adjacent, or such that two are adjacent and the third is opposite
them. In any case, by symmetry, we can consider that on the second circle, the charges must
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be arranged as if the charges on the first circle were reflected through the center of the circle
and scaled to the radius of the second circle.

Then, expressing the electric field at the center of the circle as the sum of the fields from
the charges on the inner circle Eq and from the charges on the outer circle EQ, we require
a magnitude of charges such that

Eq + EQ = 0 .

Due to symmetry, up to a sign, Eq and EQ have the same form and differ only by the
factor Q/R2 and q/a2, respectively. We thus obtain

Q

R2 = q

a2 ⇒ Q

q
=
(
R

a

)2
= (tan 72◦ cos 54◦ + sin 54◦)2 .= 6.85 .

It is also interesting to note that√
R

a
= φ = 1.61803 . . . ,

where φ is the golden ratio.

Petr Sacher
petr.sacher@fykos.org

Problem DG . . . bead on parabole
Consider a bead of mass m sliding freely on a wire in the shape of a parabolic curve y = ax2

in a uniform gravitational field. The wire is rotated about the axis (“the y-axis”), which is
parallel to g. What must be the angular velocity ω so that the bead does not slide along the
parabola regardless of its position? Petr reminisced about theoretical mechanics.

Let us express the forces acting on the bead as a vector. In the x-direction, there is the
centrifugal force, and in the y-direction, there is the gravitational force. Thus,

F =
[
mω2x
−mg

]
.

The bead can move only along the parabola. To remain stationary, the resultant force
on the bead must act along the normal to the parabola; otherwise, the tangential component
would cause the bead to “slide” along the parabola. The resultant force points along the normal
precisely when it is perpendicular to the tangent to the parabola. The tangent can be expressed
using the derivative. We have

y′ = 2ax ,

so a vector along the tangent at point x is

v =
[

1
2ax

]
.
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Perpendicularity is verified by requiring that v and F have a zero scalar product. The
condition on ω is therefore

F · v = mω2x− 2mgax = 0 .
From this, it follows that

ω =
√

2ga .

Petr Sacher
petr.sacher@fykos.org

Problem DH . . . crossing the road in front of a car
Lego sometimes cuts it a bit too close when running
across the road, so he decided that this time he would
rather calculate everything in advance, in case the car
is driven by Radek, who does not slow down for pedes-
trians. The situation is shown in the figure. What is
the minimum speed at which Lego must run to cross in
front of the car? Lego does not necessarily have to run
perpendicular to the road. Express the result in terms
of v, y, a.

Before Lego managed to calculate it, the car was of course already gone.
The problem statement mentions that Lego does not have to run perpendicular to the road.
However, running toward the car is obviously not advantageous for him; therefore, let us denote
the distance between the nearest point on the opposite side of the road and the point where
he arrives as x. If he reaches this point sooner than the car, we can claim that he managed to
cross before it. At the same time, we can assume that Lego will run at a slower speed than the
car’s speed. For this reason, if the car did not catch him at this point, it did not catch him
earlier either. Consequently, there is no reason for Lego to follow a zig-zag path; the goal is
simply to reach this specific point as soon as possible.

The distance of the car to the point where Lego leaves the road is a+ x, so the car will be
there in a time (a + x)/v. Lego’s distance to this point is

√
x2 + y2, and therefore, he must

run at a speed vL = v
√
x2 + y2/(a+ x).

It remains to find out for which x the required speed is minimal. To determine this speed,
we differentiate vL with respect to x

dvL

dx = v

x(a+x)√
x2+y2

−
√
x2 + y2

(a+ x)2 ,

and we look for where the derivative equals 0. This happens precisely when the numerator is
zero

x (a+ x)√
x2 + y2

−
√
x2 + y2 = 0 ,

xa+ x2 = x2 + y2 ,

x = y2

a
.
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We substitute back into the expression for the required speed

vL = v

√
x2 + y2

a+ x
= v

√
y4

a2 + y2

a+ y2

a

= v
y
√
y2 + a2

a2 + y2 = v
y√

y2 + a2
.

Solution in the car’s reference frame
We can also solve this problem elegantly in the car’s reference frame. In this frame, the car’s
position will not change over time. Let us introduce an x-axis parallel to the road such that the
car is located at coordinate x = 0 and Lego is initially at coordinate x = a. Lego manages to
run across the road if and only if he is located at a non-negative x-coordinate during his entire
motion.

The limiting case, similar to the previous solution, will be motion such that Lego reaches
the other side of the road at the same instant the car appears at the same location. In this
limiting case, Lego will be located exactly at coordinate x = 0 on the other side of the road.
Since it is not advantageous for Lego to zig-zag in the frame attached to him, his trajectory in
the car’s reference frame will certainly also be a straight line segment.

We can thus precisely draw the trajectory of Lego’s motion in the frame attached to the
car – it suffices to connect Lego’s initial position and the car’s position on the other side of the
road with a line segment. Lego’s velocity in the car’s reference frame must have exactly this
direction. Furthermore, we also know that Lego’s velocity vector in this reference frame can
be decomposed into the sum of the velocity vector vL, with which he moved in the ground’s
reference frame, and the velocity vector −v, where v is the car’s velocity vector, also in the
ground’s reference frame.

We can perform this vector addition graphically, as in the figure below. We know that the
resultant −v + vL must define the line connecting Lego and the front of the car. We thus
have a line and a point (the end of the vector −v) which we want to connect with the shortest
possible segment. And that is precisely the perpendicular to the given line from the end of the
vector −v.

y

−v

vL
−

v

vL

ϕ

a

Lego

In this way, we geometrically obtain a pair of right-angled triangles with one common
angle φ. We can easily calculate the hypotenuse of the triangle along which Lego moves using
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the Pythagorean theorem as
√
y2 + a2. From there, we obtain an equation for the magnitudes

of the individual velocities and the ratios of the side lengths in the given triangles

sinφ = vL

v
= y√

y2 + a2
,

meaning the minimum speed with which Lego must move is

vL = v
y√

y2 + a2
.

Šimon Pajger
legolas@fykos.org

Tomáš Kubrický
tomas.kubricky@fykos.org

Problem EA . . . kaon decay
A kaon particle with total energy EK = 500 MeV decays into two identical pions with the same
energy. What will be the angle α between the directions in which the pions fly apart? The rest
mass of the kaon is mK = 498 MeV/c2 and the rest mass of the pion is mπ = 135 MeV/c2.
Hint: You certainly know the famous relation E = mc2. This can also be rewritten in the
form E =

√
m2

0c
4 + p2c2 where m0 is the rest mass. Make use of this.

Petr was practicing particle physics.

Let us denote the energy of a pion by Eπ and the momenta of the pions by pπ,1 and pπ,2. First,
we adjust the units. In particle physics, natural units are commonly used, in which we set c = 1
and write mass and momentum in units of energy. So, we redefine

m ≡ m0c
2 ,

p ≡ pc ,

specifically, for the rest masses of the kaon and the pion, we have

mK = 498 MeV ,

mπ = 135 MeV .

Thanks to the relation
E =

√
m2 + p2

and the fact that the pions have the same energies, we know that the pions must have the
same magnitude of momentum, which we denote uniformly by pπ. The law of conservation of
momentum further gives

pK = pπ,1 + pπ,2 ,

p2
K = 2p2

π + 2p2
π cosα .

In the second equation, we computed the square of the magnitude of the momentum and used
the formula pπ,1 · pπ,2 = p2

π cosα. From this, we express

p2
π = p2

K
2 (1 + cosα) .
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From the law of conservation of energy, it follows that

E2
K = (2Eπ)2 ⇒ E2

K = 4
(
m2
π + p2

π

)
,

from which, after substituting for p2
π, we can express

cosα = E2
K − 2m2

K + 4m2
π

E2
K − 4m2

π
.

By substitution and taking the inverse cosine, we obtain

α
.= 168◦ .

Petr Sacher
petr.sacher@fykos.org

Problem EB . . . three spheres
Consider three steel spheres, each with a mass of m = 300 g, attached to massless strings of
length L = 75 cm. The other ends of the strings are connected at a single point. Each sphere
carries a charge of q = 5.0 μC. When the entire system is suspended from the point where the
strings are joined, what is the area of the horizontal triangle formed by the spheres? Feel free
to solve the problem approximately or numerically.

Petr reminisced about electromagnetism course.

By symmetry, we can conclude that the triangle formed by the charges is equilateral. Let us
denote the length of its side by a. Each charge then exerts a force on each of the others, given
by

Fe = 1
4πε0

q2

a2 = kq2

a2

which is directed away from the center of the triangle. The total force acting on any single
charge is not simply twice the magnitude of the force exerted by one other charge—due to
symmetry, the force components acting in opposite directions cancel out, leaving only the
component along the axis of the triangle. The magnitude of this total force is given by

Ftot = 2Fe cos 30◦ = kq2√
3

a2 .

For the system to be in equilibrium, the length a must be such that the resulting force on
a sphere is directed along the string tension. If this were not the case, a nonzero torque would
act on the spheres, and the system would not be in equilibrium. The height of the triangle is

v =
√

3
2 a ,

and the height of the resulting pyramid is

V =

√
3L2 − a2

3 .
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V

v

α

a

L

mg

Ftot

α

Figure 2: Diagram of the system in the equilibrium, including the forces acting on one of the
spheres.

Here we have used a property of an equilateral triangle—the center of its circumscribed circle
(which coincides with the centroid and the center of the inscribed circle) lies at 2/3 of the height
measured from the vertex. The force condition mentioned above, therefore, gives

tanα =
kq2√

3
a2

mg
= a√

3L2 − a2
,

where α is the angle by which the strings deviate from the vertical axis. By rearranging the
equation and introducing the notation b ≡ a2, we obtain a cubic equation

b3 + b
3q4

16π2m2g2ε2
0

− 9q4L2

16π2m2g2ε2
0

= 0 ,

m2g2

3k2q4 b
3 + b− 3L2 = 0 .

This equation can be solved numerically using a calculator. Since it is an equation from
which we can easily isolate b, an iterative method suggests itself. This method is based on
rewriting the equation in the form b = f(b) and then repeatedly substituting the most recently
computed result b′ back into the function f until the result no longer changes significantly.
There are two possible approaches—either expressing b from the linear term or from the cubic
term. If we were to express b from the linear term, we would quickly find that the resulting
sequence does not converge. It is therefore advantageous to express b from the cubic term:

b = 3

√
C − b

A
≡ f(b) ,

where

A = m2g2

3k2q4
.= 57.184 m−4 ,

C = 3L2 .= 1.687 5 m2.
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On a calculator, the iteration can be carried out efficiently by first substituting an initial
guess for b (for example, 0.1), evaluating the expression, and then replacing every occurrence
of b on the right side of the equation with the calculator variable ANS.

ANSn+1 = 3

√
C − ANSn

A
,

where ANSn is the result after the nth iteration (after the nth press of =). After several iterations,
we obtain

b
.= 0.2902 m2 .

The area of the triangle is then

S =
√

3
4 b

.= 0.13 m2 .

Petr Sacher
petr.sacher@fykos.org

Vladimír Slanina
vladimir.slanina@fykos.org

Problem EC . . . the shrunken Moon
In the movie Despicable Me, the main character Gru shrinks the Moon and steals it. Imagine
if instead of stealing it, Gru would have merely instantly shrunk the Moon such that the
ratio of its new mass to its original mass was m/M = 4/5, while preserving the direction and
magnitude of its total momentum and letting it continue orbiting the Earth. What would its
new orbital period τ be? Assume that the Moon orbits the Earth along a circular trajectory
with a radius R = 3.844 · 108 m and that the mass of the Moon is significantly smaller than the
mass of the Earth. Peter was watching the Minions

First, we use the law of conservation of energy, which we can write for the shrunken Moon in
the form

1
2m∥v∥2 − GmM⊕

r
= E .

Since the momentum is conserved, we can determine the Moon’s velocity immediately after its
mass is changed:

mv = MR
2π
T

⇒ v = 2π
T

M

m
R .

We can express the period T using Kepler’s third law. It states that for any body orbiting
another (significantly heavier) body, the following holds:

a3

T 2 = const. ,

where T is the orbital period and a is the semi-major axis of the ellipse along which the body
orbits. We can calculate the unknown constant using the fact that the same relationship applies
to a circular orbit, where the gravitational force cancels out the centrifugal force and a = R.
Thus

m

(
4π2

T 2

)
R = GmM⊕

R2 ⇒ R3

T 2 = GM⊕

4π2 ,
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from which we obtain

T = 2π√
GM⊕

R3/2 ⇒ v =

√
GM⊕

R

(
M

m

)
.

Thanks to this, we can express the constant1 E/m as

E

m
= 1

2
GM⊕

R

((
M

m

)2
− 2
)
.

In polar coordinates, we can express the square of the velocity magnitude in general as

∥v∥2 = ṙ2 + r2φ̇2 ,

where ṙ2 and r2φ̇2 are the squares of the instantaneous radial and tangent velocities. When the
Moon is at perigee or apogee, the radial component of velocity is zero. At perigee or apogee,
the law of conservation of energy gives us the equation

1
2mr

2φ̇2 − GmM⊕

r
= E ⇒ r3φ̇2 − 2E

m
r − 2GM⊕ = 0 .

Let us now express the instantaneous angular velocity φ̇. Kepler’s second law (or the law
of conservation of angular momentum) tells us that

1
2r

2φ̇ = πR
2

T

M

m
= const.

and thus we can express

φ̇ = 2π
T

M

m

R2

r2 = M

m

√
GM⊕R

r2 .

Substituting this into the relation we obtained earlier from the law of conservation of energy
at perigee or apogee, we get a quadratic equation for r

r2 + 2R(
M
m

)2 − 2
r −

(
M
m

)2
R2(

M
m

)2 − 2
= 0 ,

whose solutions are

r =

{
(M/m)2

2−(M/m)2R = 1.373 · 109 m
R = 3.844 · 108 m

Note that one of the results corresponds to the original distance of the Moon from Earth R
— meaning that immediately after the mass change, the Moon is at perigee. We could have
noticed this earlier because, immediately after the mass change, the radial component of its
velocity is zero. Therefore, we define r to be the distance at apogee; we can then determine
the size of the semi-major axis of the ellipse along which the Moon newly orbits as

a = r +R

2 = 1
2 −

(
M
m

)2R = 16
7 R .

1It is indeed a constant because energy is conserved.
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We can now substitute this result into Kepler’s third law

a3

τ2 = GM⊕

4π2 ,

from which, by expressing τ , we get

τ =
(16

7

)3/2
T =

(16
7

)3/2 2π√
GM⊕

R3/2 .= 94.9 d .

Solution using the vis-viva equation
Before shrinking, the orbital speed of the Moon is

v0 = 2πR
T

⇒ v2
0 = 4π2R2

T 2 = GM⊕

R
,

where we used Kepler’s third law among algebraic manipulations.

R3

T 2 = GM⊕

4π2 = const. .

The velocity v0 is also referred to as the first cosmic velocity.
According to the problem statement, momentum is conserved during the shrinking; there-

fore, for the mass m and the velocity after shrinking v1, the following holds:

v1m = v0M .

Then, by rearranging, we obtain:

v1 = M

m
v0 ⇒ v2

1 =
(
M

m

)2
v2

0 =
(
M

m

)2 GM⊕

R
.

For motion along elliptical and hyperbolic trajectories, the vis-viva equation applies:

v2 = GM
(2
r

− 1
a

)
,

which gives the relationship between the general distance r from the central body of mass M ≫ m
on an orbit with semi-major axis a (for hyperbolic trajectories, this axis has a negative sign)
and the magnitude of the velocity v at a given moment. In our case, the Moon orbits the Earth
with mass M⊕; at the moment of shrinking, it has velocity v1 and distance R from the Earth,
so the following holds:

GM⊕

( 2
R

− 1
a

)
= v2

1 =
(
M

m

)2 GM⊕

R

and after algebraic manipulations

a = R

2 −
(

M
m

)2 = 16
7 R .

This result is consistent with the previous method.

Petr Sacher
petr.sacher@fykos.org

Vladimír Slanina
vladimir.slanina@fykos.org
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Problem ED . . . anti-reflective coating
To prevent light from reflecting off glasses (which, for example, looks bad in photographs), we
can apply an anti-reflective coating. Suppose we wish to apply an anti-reflective coating made
of a material with a refractive index n = 1.38 onto glasses with a refractive index N > n.
What is the minimum thickness d of the layer required so that no light is reflected at normal
incidence, considering only a single reflection? Assume a standard wavelength of λ = 550 nm.

Petr wants to look good in photographs.

Since N > n and n > n0, the phase changes by π during both reflections — on the lens glass
and on the anti-reflective coating. When the reflected rays subsequently interfere, the phase
difference due to reflection is π−π = 0, and thus plays no role. We want the wave traversing the
anti-reflective layer to acquire a phase delay of (2p+1)π, where p ∈ N0 — this way, the wave that
passes through the layer and reflects back will be exactly in anti-phase with the wave reflected
from the coating’s surface, resulting in destructive interference. As the ray passes through the
anti-reflective layer, it travels a distance of 2d; the optical path length is therefore 2dn. Thus,
we require

2dnk = (2p+ 1) π ,
where k is the angular wavenumber in vacuum. We can express this using the wavelength λ as

k = 2π
λ

⇒ 2dn 2
λ

= (2p+ 1) .

We obtain the thinnest layer if the phase difference is minimal, that is, p = 0. By substi-
tuting for k and p, and expressing d, we then have

d = λ

4n
.= 99.6 nm .

Petr Sacher
petr.sacher@fykos.org

Problem EE . . . physical pendulums with stiff coupling
Consider two rods of length l = 15 cm, each suspended by one of its ends and able to rotate
freely about the suspension point. These suspension points are at the same height, their mutual
distance is equal to l, and the free ends of the rods are connected by another rod also of length l.
All three rods have mass m = 300 g. What is the period of small oscillations if we set the system
into motion in the plane in which the rods lie? The system is located in a gravitational field
with acceleration g. Lego’s problem was physics-ified.

Since the system consists of three independently moving parts executing different harmonic
motions, we will not use the standard procedure based on an equation of motion, but instead
focus on energies. We therefore express the potential and kinetic energy as functions of the
angular displacement of the vertical rods φ and their angular velocity φ̇.

When the hanging rods are displaced by an angle φ from the vertical direction, the centers
of mass of the two hanging rods are raised by (l/2)(1 − cosφ) from the equilibrium position,
and the connecting rod is raised by l(1 − cosφ). The total potential energy is

Ep = mgl
(

21
2 + 1

)
(1 − cosφ) ≈ 2mglφ

2

2 ,
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where we have used the second order Taylor expansion for the cosine as cosφ ≈ 1 − φ2/2.
The hanging rods rotate about their suspension points. The moment of inertia of each of

these rods with respect to the suspension point is ml2/3, so when they move with angular
velocity φ̇, the kinetic energy of each of them is

1
6ml

2φ̇2 .

The connecting rod does not rotate; it remains horizontal at all times, so it suffices to use the
formula for translational kinetic energy with the velocity of its center of mass. The center of
mass moves along a circle of radius l with angular velocity φ̇, that is, with speed lφ̇. The kinetic
energy is then (1/2)ml2φ̇2. Altogether, the kinetic energy is

Ek =
(1

3 + 1
2

)
ml2φ̇2 = 5

6ml
2φ̇2 .

Now, by analogy with the linear harmonic oscillator, we rewrite the energies in the form

Ep = 1
2kefq

2 ,

Ek = 1
2mefq̇

2 ,

which yields that the effective stiffness of our pendulum is kef = 2mgl and the effective mass
is mef = 5ml2/3. Since we use an angle as the coordinate, these two quantities have the
dimensions of torque and moment of inertia, respectively. In any case, it only remains to
substitute into the formula for the period of small oscillations

T = 2π
√
mef

kef
= 2π

√
5
3ml

2

2mgl = 2π
√

5l
6g

.= 0.71 s .

Finally, note that the problem could also be solved using the standard procedure for a physi-
cal pendulum, because the motion of the individual components is independent of their position.
We can therefore virtually shift them so that their axes of rotation coincide at a single point.
Such a resulting pendulum would have mass M = 3m and total moment of inertia I = ml2/3+
+ml2/3 +ml2 = 5ml2/3 (since the horizontal rod does not spin, it has the moment of inertia
of a point mass). The distance of the center of mass of this pendulum from the common axis
would be calculated as the average of the distances of the centers of mass of the individual
components, L = (l/2 + l/2 + l)/3 = 2l/3. These values can again be substituted into the
tabulated formula, yielding the same result as with the previous method

T = 2π
√

I

MgL
= 2π

√
5l
6g .

Šimon Pajger
legolas@fykos.org

Jakub Kliment
jakub.kliment@fykos.org
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Problem EF . . . inside of a glowing sphere
Imagine you are inside a hollow sphere with a radius equal to the Sun’s radius R⊙, positioned
at a distance R⊙/2 from its center. The walls of the sphere have the surface temperature of the
Sun T = 5 800 K. Your body can be approximated as a sphere with a cross-sectional area S =
= 0.70 m2 and a massm = 70 kg, and assume that you absorb η = 55 % of the incident radiation.
Assume that each surface element of the sphere emits radiation isotropically. Determine the
magnitude and direction of the force exerted on you by the radiation pressure emitted by the
walls of the sphere. Vlado got off-topic at the Christmas gathering.

Let us consider an element of a sphere that emits radiation isotropically. The radiation in-
tensity I of this element decreases according to the inverse-square law, which states that I
decreases with the second power of the distance from the source

I ∝ r−2 .

The force with which radiation acts on a body is caused by the change in the momentum of
photons during their interaction with the body. In the case of complete absorption of photons,
this is a perfectly inelastic collision; in the case of complete reflection, it is a perfectly elastic
collision. The radiation pressure P (the radiation force per unit area) is therefore proportional
to the change in photon momentum p, and thus2

P ∝ ∆p ∝ p ∝ Ephoton ∝ I ∝ r−2 .

The radiation pressure emitted by an element of the surface of a sphere is proportional
to r−2. For an exact derivation of the force with which radiation acts on a body, we would
have to take the geometry of the body into account and separately compute the contributions
of absorbed and reflected light; however, all these effects are ultimately proportional to P,
so F ∝ P ∝ r−2 holds. This problem is therefore mathematically equivalent to finding the
force exerted by a charged sphere on a body inside it that carries a charge of the same sign.
According to Gauss’s law, this force is zero, hence

F = 0 N .

Vladimír Slanina
vladimir.slanina@fykos.org

Problem EG . . . got to be the best pirate I have ever seen
Jack Sparrow is sailing into a harbor with velocity v0 on a leaking boat. Water is flowing into
the boat at a constant rate Q, the boat’s total volume is V , and its mass including the pirate
is m0. Jack is currently counteracting the intake using a bucket, but to preserve his pirate
aura, he intends to stop at a certain moment and let the boat drift to the pier, where it will
sink. At what distance from the pier should he stop using the bucket? Neglect resistive forces.

“So it would seem” said Petr.

Due to the water inflow, the boat’s mass at time t after Jack stops removing water is given by

m(t) = m0 +Qρt .

2A complete derivation of this relation is given in the problem repulsive light.
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Archimedes’ principle states that the buoyant force acting on the boat is proportional to the
submerged volume. It is maximized when the entire boat is submerged, that is,

Fmax = V ρg .

To prevent the boat from sinking, the maximum buoyant force must always exceed the force of
gravity; therefore, the following must hold:

V ρg − (m0 +Qρt) g ≥ 0 .

In the limiting case where the forces balance out exactly at the limiting time T , we obtain the
condition

T = V ρ−m0

ρQ
.

During the time T from the moment Jack Sparrow stops removing the incoming water, the
boat must cover a distance d and reach the pier. However, since the boat’s mass changes, its
velocity changes as well. The law of conservation of momentum yields

m0v0 = m(t) v(t) ,

from which, using m(t), we can express the boat’s velocity v(t) as a function of time:

v(t) = m0v0

m0 +Qρt
.

We now simply integrate this from the initial time 0 to time T . We have

d =
∫ T

0

m0v0

m0 +Qρt
dt ,

u = m0 +Qρt ⇒ d = m0v0

Qρ

∫ m0+QρT

m0

1
u

du ,

d = m0v0

Qρ
[lnu ]m0+QρT

m0
,

which, after substituting for T , yields

d = m0v0

Qρ
ln
(
V ρ

m0

)
.

A common error in solving this problem is assuming that energy is conserved, which does
not hold here, that is,

1
2m0v

2
0 ̸= 1

2mv
2 .

This is because the water effectively undergoes a perfectly inelastic collision with the boat.

Petr Sacher
petr.sacher@fykos.org
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Problem EH . . . grilled Roman, Sicilian-style
Archimedes is said to have constructed a machine made of polished copper mirrors to defend
Syracuse, intended to ignite enemy ships.

Imagine such a machine, suppose it consists of a copper plate bent into a parabolic shape
given by the equation η = πξ2, where π is a parameter. We can tune the value of the parameter π,
and thus the focusing of the “mirror”, by turning a hand crank. The rotation of the crank is
linearly related to the parameter π by π = αϑ + ϑ0, where ϑ is the rotation of the crank in
radians and α = 2.0 · 10−5 m−1·rad−1. The ship must be targeted, i.e., placed at the focus of
the parabola. The ship approaches us with uniform linear motion at a speed of ν = 15 km·h−1,
and at time τ0 = 0, it is targeted at a distance of φ0 = 1.0 km. At what speed must we turn
the crank at time τ = 3.0 min, so that the ship remains targeted?

Petr was watching a video about the Punic wars.

In the first phase, we should determine how the focal distance φ relates to the single parameter
of the parabola, π. If we do not know this relationship, it does not matter; we will derive
it. A parabola is defined as a curve whose points are all equidistant from the focus Φ and the
directrix. Let us define a coordinate system [ξ, η] with the origin at the vertex of our mirror and
the η axis pointing toward the ship. In our situation, Φ is located at the point Φ = [0, φ]. The
directrix has the equation η = −φ, which we easily determine from the fact that the point [0, 0]
must be at a distance φ from it and must lie below the parabola. Let there be a point A = [ξ, η]
on the parabola and a point B on the directrix directly below it. The distances |ΦA| and |AB|
are given by

|ΦA| =
√
ξ2 + (η − φ)2 ,

|AB| = (η + φ) .

By the definition of a parabola, the equality

|ΦA| = |AB|

must hold, which, using the relations above, substituting for η, and expressing φ, yields

φ = 1
4π .

The distance to the required focal point varies with time as

φ = φ0 − ντ ,

Substituting for π in the expression for φ above, we find that

φ = 1
4 (αϑ+ ϑ0) .

We thus have the equality
1

4 (αϑ+ ϑ0) = φ0 − ντ .

Expressing the rotation angle of the crank ϑ, we obtain the time dependence

ϑ(τ) = 1
4α (φ0 − ντ) − ϑ0

α
.
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To determine the required angular velocity of the crank rotation ω, we differentiate this equation
with respect to time, obtaining

ω = ϑ̇ = ν

4α
1

(φ0 − ντ)2

and by evaluating the expression for the given values, we obtain

ω
.= 0.83 rad·s−1 .

Petr Sacher
petr.sacher@fykos.org

Problem FA . . . Starcraper
Marek wants to build a skyscraper at the latitude φ = 15◦ that reaches the stars. How tall
should it be to slow down the Earth’s rotation by 1 %? Consider the Earth to be a homogeneous
sphere of mass M , which remains unchanged by this construction, since Marek extracts the mass
from a white hole. Assume that the mass of the building is initially at rest, and it is precisely
its rotation that slows down the Earth. Further assume that the skyscraper is sufficiently thin,
homogeneous, and has mass m = 33 · 10−4M .

Marek likes to look at things from a different perspective.

During the construction of the skyscraper, the Earth’s angular momentum L is conserved.
Before the construction begins, this angular momentum is

L = Jω = 2
5MR2ω ,

where J is the moment of inertia of the Earth before the construction, ω is its angular frequency,
M is the mass of the Earth, and R its radius. We used the formula for the moment of inertia
of a homogeneous sphere.

What is the moment of inertia of the system after the construction? It consists of two
parts—the Earth, which has the same moment of inertia as before, plus the contribution of
the skyscraper. Let us compute the moment of inertia of a homogeneous rod with linear mass
density λ and length l about its center, inclined at an angle α = 90◦ − φ from the axis of
rotation, which is precisely our skyscraper.

We can imagine that the rod is composed of small elements of length dl, each with mass dm =
= λdl. If we consider a coordinate x in the direction of the rod, but perpendicular to the axis
of rotation, the projection of the element along this coordinate is dx = dl cosφ. From the
definition, the moment of inertia of the rod is

J ′
v =

∫
x2 dm =

∫ l cos φ/2

−l cos φ/2
x2 λ

cosφ dx = 1
12 (λl) l2 cos2 φ ,

and since m = λl is the mass of the rod, for a rod perpendicular to the axis of rotation we
would obtain the well-known formula (1/12)ml2, confirming our result.

However, the center of mass of our rod is at a distance d = (R+ l/2) cosφ from the Earth’s
axis of rotation, so by the parallel axis theorem, its moment of inertia for rotation about this
axis is Jv = J ′

v +md2.
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Let ω′ be the angular frequency after construction. Then the equation for conservation of
the total angular momentum is

L = Jω = (J + Jv)ω′ ,

Jω =
(
J + 1

12ml
2 cos2 φ+m

((
R+ l

2

)2
cos2 φ

))
ω′ ,

0 = 1
3 l

2 +Rl +
(
R2 − J

m cos2(φ)

(
ω

ω′ − 1
))

,

l = 3R
2

(
−1 +

√
1 − 4

3

(
1 − J

R2
1

m cos2(φ)

(
ω

ω′ − 1
)))

=

= R

2

(
−3 +

√
9 − 12 + 24M

495m cos2 φ

)
= R

2

(
−3 +

√
8M

165m cos2 φ
− 3
)
,

where we chose the physically relevant positive root. In the last step we substituted for J
and used ω′/ω = 99/100 from the problem statement. Substituting the values for m and φ
yields l .= 1 800 km.

Marek Milička
marek.milicka@fykos.org

Problem FB . . . oscillating massive pulley
Consider a homogeneous pulley of mass m in the shape of a disk with radius r. We suspend this
pulley from the ceiling such that on one side, the rope is attached to the ceiling directly, and on
the other side, it is attached via a spring of stiffness k. We pull the pulley slightly downwards
from its equilibrium position. What is the period of small oscillations? Assume that the pulley
does not slip on the rope.
Presumably, since there was a lack of problems involving oscillations, Lego proposed this one.

In the equilibrium position, the rope is under a tension of mg/2, which is also the force exerted
by the spring on the rope.

When we pull the pulley downwards such that its center moves down by x, the spring must
extend by ∆y = 2x relative to its equilibrium length (since the rope does not extend at all on
the other side). Consequently, the force it exerts on the pulley increases by ∆Fk = k∆y = 2kx
compared to the equilibrium case, meaning the total spring force becomes Fk = mg/2 + 2kx.
This is precisely the force pulling one side of the pulley upwards. Since the pulley has mass, we
do not know the force pulling the other side upwards; let us denote this force as T = mg/2+∆T
(we could denote this force simply as T and use that in calculations, but this decomposition is
more practical).

The total force acting on the pulley is therefore

F = Fk + T − Fg = mg/2 + 2kx+mg/2 + ∆T −mg = 2kx+ ∆T ,

where we consider the upward direction to be positive. At the same time, it is hopefully
clear why the substitution T = mg/2 + ∆T is so useful. Thus, the acceleration of the pulley
is a = (2kx+ ∆T )/m.

43

mailto:marek.milicka@fykos.org


Fyziklani 2026 20th year 13th of February 2026

Let us now look at the torque. The weight of the pulley has zero torque with respect to its
center. The ropes on both sides have a lever arm of r, but they rotate the pulley in opposite
directions. We choose the positive direction of rotation as the one where the side of the pulley
under the spring rotates upwards (since this is exactly what happens when the pulley moves in
this direction). The torque is therefore

M = rFk − rT + 0Fg = r(mg/2 + 2kx) − r(mg/2 + ∆T ) = r(2kx− ∆T ) .

The moment of inertia of the disk is I = mr2/2; thus, the angular acceleration is

ε = M

I
= r(2kx− ∆T )

mr2/2 = 22kx− ∆T
mr

.

Since the rope on the side without the spring does not move, it is evident that the velocity of
ascent and the tangential velocity must have the same magnitude (because the pulley essentially
rolls up the rope). Therefore, the same relationship must hold between the acceleration and
the “tangential acceleration”

a = εr ,

2kx+ ∆T
m

= 22kx− ∆T
m

,

2kx+ ∆T = 4kx− 2∆T ,

∆T = 2
3kx .

We can substitute for ∆T to express the acceleration

−ẍ = a = 2kx+ ∆T
m

= 8
3
k

m
x ,

which is the equation of a linear harmonic oscillator with ω2 = 8k/(3m), so the period of small
oscillations is

T = 2π
√

3
8
m

k
.

Šimon Pajger
legolas@fykos.org

Problem FC . . . motocross derby
Three motorcyclists Pepa, Vojta, and Marek, along with their motorcycles, are positioned at
the vertices of an equilateral triangle with side length a. At time t = 0, they all simultaneously
begin to pursue one another with speed v0, with Pepa chasing Vojta, Vojta chasing Marek, and
Marek chasing Pepa. However, they do not want to collide at full speed; thus, the closer they
get to each other, the more they slow down. Therefore, their speed is directly proportional to
their mutual distance v(l) = (l/a)v0. How long does it take for the distance between Vojta and
Marek to decrease to x (assuming x < a)? Kubo already has a third motorcycle at home.

First, it is necessary to realize that the motions of all three motorcyclists are mutually symmetric
with respect to the center of the original triangle. Their mutual positions therefore always
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Figure 3: Diagram of the situation with the trajectories marked.

form the vertices of an equilateral triangle whose center remains fixed at the original location;
however, the side length gradually decreases and the orientation changes.

Let us consider the radial distance of one of the motorcyclists from the center of the triangle.
At time t = 0, it has the value r0 = a/

√
3. Subsequently, the motorcyclist approaches the center

in this direction with speed v
√

3/2 (the projection of his velocity onto the radial direction).
Therefore,

ṙ = −
√

3
2
l

a
v0 = −3

2
r

a
v0 .

The decrease in r(t) is thus directly proportional to its instantaneous value, which implies an
exponential decrease

r(t) = r0 exp
(

−3
2
v0

a
t
)
.

The requirement that the mutual distance of two motorcyclists becomes equal to x can
be reformulated as the equality of the ratios r/r0 and x/a. It then suffices to rearrange the
resulting equation and solve for the desired time t,

r(t)
r0

= exp
(

−3
2
v0

a
t
)

!= x

a
,

t = 2a
3v0

ln
(
a

x

)
.

Jakub Kliment
jakub.kliment@fykos.org
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Problem FD . . . conical cup
Let us consider a cup in the shape of a hollow cone without a base, of height h, whose opening
angle is α. We fill the cup with a liquid of density ρ all the way up to the rim. Because such
a cup would stand poorly with its apex down, we quickly turn it upside down and place it on
a table so that not a single drop of liquid spills out. What buoyant force acts on the cup? The
liquid at the apex inside the cone is at atmospheric pressure.

Petr found this story in a Vietnamese textbook.

The force with which the liquid acts on the cup is caused by the hydrostatic pressure

p = zρg ,

where z is the depth at which an element of the cup is located. The hydrostatic pressure is an
“addition” to the atmospheric pressure, which acts on the cup from the outside and by which
the liquid then acts back. The liquid at the very tip of the cup therefore acts on the cup only by
atmospheric pressure. Since this constant contribution cancels out with the external pressure,
we do not need to take it into account.

Consider a small element of the inner surface of the cup dS; the force exerted on it by the
liquid is dF = p dS. However, from symmetry, we see that when all these infinitesimal forces
are summed up, the radial components cancel each other out and only the force in the upward
direction remains. It therefore suffices to consider only the projection of dF in the upward
direction; from simple geometry, we have

dF↑ = dF sin α2 .

To obtain the net force, we must integrate

F =
∫

S

dF↑ .

We can describe the cup by two cylindrical parameters z ∈ ⟨0, h⟩ and φ ∈ ⟨0, 2π); the radius
of the cup is then a dependent variable, for which we can derive

R = z tan α2 .

The final step before integration is to determine the form of the surface element dS expressed
in the chosen coordinates.3 If we consider an infinitesimally small rectangle cut out of the lateral
surface of the cone with dimensions dx and dy, where dx lies in the horizontal plane and dy is
directed toward the apex, we have

dS = dx dy .

We now express dx and dy in terms of dφ and dz. We have

dx = R(z) dφ = z tan α2 dφ ,

3Beside the stated procedure, this can be derived in a tedious mathematical way by computing the norm of
the vector product between the derivatives of the vector that parametrizes the cone, as taught by the theory
of surface integrals of the first kind.
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and if we additionally notice that dz is in fact the projection of dy onto the vertical axis, we
obtain

dy = 1
cos α

2
dz .

Substituting the previous results into the integral for F and simplifying, we obtain

F =
∫

S

p(z) sin α2 dxdy = tan2 α

2 ρg
∫ h

0

∫ 2π

0
z2 dφ dz .

Finally, we arrive at
F = 2

3πρg tan2(α
2

)
h3 .

Petr Sacher
petr.sacher@fykos.org

Problem FE . . . fast-spinning kettle
Marek has a thin thermally insulating spherical shell of radius R and mass M filled with water.
He spins up the sphere while keeping the water inside at rest. The sphere begins to slow down
due to interaction with the water, and after a long time, Marek finds that the temperature
inside the sphere has risen by ∆T . To what angular velocity did he spin up the sphere?

Assume that the water has a constant density ρ and specific heat capacity cv. Due to
friction, which also heats the water, angular momentum is not conserved.

Marek was wandering around Matfyz.

The rotational energy of the shell is converted into thermal energy, which heats the water. The
rotational energy is

Erot = 1
2Jω

2 ,

where J is the moment of inertia of the spherical shell. The thermal energy is given by

Etherm = mcv∆T = 4
3πR

3ρcv∆T ,

where m is the mass of the water inside.
It remains to calculate the moment of inertia of the spherical shell. Since the shell is

homogeneous, we define the surface density

σ = M

S
= M

4πR2 ,

where S is the surface area of the shell. Let us imagine slicing the sphere “horizontally”
(perpendicular to the axis of rotation) into thin rings, whose height z ranges from −R to R.
Each of them has a radius r, determining the distance from the axis of rotation, and a height dz.
From the Pythagorean theorem, we have r =

√
R2 − z2 and the surface area of the ring is dS =

= 2πR dz. The mass of the ring is

dm = σ dS = M dz
2R ,
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The moment of inertia of a single ring is

dJ = r2 dm =
(
R2 − z2) M

2R dz ;

to calculate the total moment, we must sum up—or more precisely integrate—over all z, i.e.,

J = M

2R

∫ R

−R

(
R2 − z2) dz = M

2R

(
2R3 − 2

3R
3
)

= 2
3MR2 .

It remains to substitute into the formula for energy, and we obtain

Erot = Etherm ,

1
3MR2ω2 = 4

3πR
3ρcv∆T ,

ω = 2

√
πRρcv∆T

M
.

Marek Milička
marek.milicka@fykos.org

Problem FF . . . definitional
Consider a homogeneous rod standing vertically upward on the Earth’s surface. What must be
the length of this rod so that its center of gravity, i.e., the point where the gravitational force
effectively acts, is at a distance of 1.0 m from its center of mass?
Hint: You may find it useful that for small x the approximation ln (1 + x) ≈ x− x2/2 + x3/3
holds. Marek was contemplating his height.

The center of mass of a homogeneous rod is at its midpoint, i.e., at a height ys = L/2 above
the ground.

The center of gravity is the average of the positions of the rod segments, weighted by the
force acting on each segment. Since the rod is homogeneous, it has a constant linear density
(mass per unit length) λ = M/L, where M is the mass of the rod and L is its length. The
gravitational force acting on a segment of mass dm is

dFg = G
MZ dm
r2 = G

MZλdr
r2 ,

where r is the distance of the given segment from the center of the Earth, MZ is the mass of
the Earth, and dr is the length of the given segment.

The weighted average over the segments is then

rp =
∫
r dFg∫
dFg

=
∫ R+L

R
r 1

r2 dr∫ R+L

R
1

r2 dr
,

where R is the radius of the Earth. Evaluating the integrals yields

rp =
ln R+L

R
1
R

− 1
R+L

= R(R+ L)
L

ln
(

1 + L

R

)
.
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To arrive at the result, we use the Taylor expansion of the logarithm, since L ≪ R will certainly
hold. Then

ln
(

1 + L

R

)
≈ L

R
− L2

2R2 + L3

3R3 .

Substituting, we obtain

rp ≈ R(R+ L)
L

(
L

R
− L2

2R2 + L3

3R3

)
=

= R
(

1 + L

R

)(
1 − L

2R + L2

3R2

)
≈

≈ R+ L

2 − L2

6R ,

where in the last step we neglected terms of the highest order in L/R. Let us look at the
result—the height of the center of gravity is almost at a height R+L/2 above the center of the
Earth, just like the center of mass; only the last term makes a difference, and this difference is
supposed to be one meter.

By substitution, we obtain L ≈ 6.2 km.

Marek Milička
marek.milicka@fykos.org

Problem FG . . . a new lamp
Vlado bought a new lamp, but as is often the case these days, new devices come only with
a cable and no adapter. Vlado has a U = 24 V adapter available, but the nominal voltage
of the new lamp is UL = 12 V. He therefore decides to connect it to this adapter through
a potentiometer, which he connects as a voltage divider. Assume that the lamp has power
input PL = 12 W. Vlado cares about the planet and thus wants the efficiency of the entire
system to be at least η = 40 %. Calculate the total resistance of the potentiometer at which
the maximum current flows through the circuit. Vlado was(n’t) illuminated.

Let us denote the total resistance of the potentiometer as R, the resistance of the portion of
the potentiometer in the circuit branch as RX (Fig. 4), and the resistance of the lamp as RL =
= U2

L/PL = 12 Ω. Since the voltage across both branches is UL, according to Kirchhoff’s first
law, we have

I = UL

RL
+ UL

RX
. (3)

The total efficiency of the circuit is equal to the ratio of the lamp power PL to the source
power P , i.e.,

η = PL

P
=

U2
L

RL

UI
⇒ I = U2

L
ηURL

.

From this relation, it follows that the maximum current that can flow through the circuit is
not affected by RX or R. On the contrary, it is inversely proportional to η, so the maximum
current is achieved for the smallest allowed value η = 0.4.
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Substituting into equation (3), we obtain

U2
L

ηU RL
= UL

RL
+ UL

RX
,

RX = RL
1
η

UL
U

− 1
= 48 Ω .

The portion of the potentiometer with resistance R−RX must also carry the current I. The total
voltage in the circuit is U , and the voltage across the branched portion is UL, so according to
Kirchhoff’s second law, the voltage across this part of the potentiometer is U ′ = U−UL = 12 V.
Using Kirchhoff’s first law again, we have

U ′

R−RX
= UL

RL
+ UL

RX
,

and thus
R = RX + U ′

UL
RL

+ UL
RX

= ηU2

PL

(
1 + ηUL

UL − ηU

)
= 57.6 Ω .= 58 Ω .

U

RX

RL

R − RX

Figure 4: Circuit diagram of the lamp connected via a potentiometer.

Vladimír Slanina
vladimir.slanina@fykos.org

Problem FH . . . ice bubble
David was looking perpendicularly at a soap bubble (for simplicity, assume it is made only of
water), which appeared green to him due to interference, with a wavelength of λ0 = 550 nm.
However, since it was really cold outside, the bubble began to freeze. With what wavelength will
David see the frozen bubble? Assume that the inner diameter of the bubble remains constant
at 2r = 10.0 cm, and that David observes only the first order of interference. The refractive
index of ice is nl = 1.31.

David created an Instagram account and found a video of a bubble freezing.
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First, we determine the thickness of the bubble from thin-film interference. If we want an
interference maximum, we require that an integer multiplem (called the order of the interference
maximum) of the wavelength to be equal to the optical path difference. However, since we are
interested in reflection, this must be a half-integer multiple of λ0 due to a phase change of π
upon reflection. In general, the ray may propagate through the layer at some angle θ. For
constructive interference, the following relation holds:

λ0

(
m+ 1

2

)
= 2dn cos θ ,

where d is the thickness of the water layer, n its refractive index, and θ is the angle of the ray
relative to the normal at the point where David observes the interference. Since David looks
at the bubble perpendicularly, cos θ = 1, and the formula reduces to

λ0

(
m+ 1

2

)
= 2dn ⇒ d = λ0

2n

(
m+ 1

2

)
.

Now we must determine how the thickness d changes when water undergoes a phase change.
For the volume of a spherical shell, we have

V = 4
3π
[
(R3) − r3] ,

where r is the inner radius and R is the outer radius. Furthermore, the law of conservation of
mass must hold

V ρ = Vlρl ,

4
3π
[
(r + d)3 − r3] ρ = 4

3π
[
(r + dl)3 − r3] ρl ,(

(r + d)3 − r3) ρ =
(
(r + dl)3 − r3) ρl ,(

3r2d+ 3rd2 + d3) ρ =
(
3r2dl + 3rd2

l + d3
l

)
ρl .

From the problem statement, we know that r = 5 cm, and therefore we use the approxima-
tion 3rd2 + d3 ≈ 0. We thus simplify the equation to

3r2dρ = 3r2dlρl ⇒ dl = d
ρ

ρl
,

which we substitute back into the second equation to obtain

λ
(
ml + 1

2

)
= 2d ρ

ρl
nl .

Next, we use the relation between d and λ0

λ
(
ml + 1

2

)
= 2λ0

2n

(
m+ 1

2

)
ρ

ρl
nl .

Finally, using the fact that David observes the same interference order m = ml = 1, we obtain

λ = λ0
nl

n

ρ

ρl

.= 588 nm .

David Škrob
david.skrob@fykos.org
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Problem GA . . . antigravitational

α

γβ

Marek has two cones of height h and opening angle α glued together at
their bases. He places them horizontally midway between two long rods
that enclose an angle β and lie in a plane inclined at an angle γ. Both rods
have the same inclination with respect to the horizontal plane. Marek
watches in surprise as the points of contact between the cones and the
rods move upward. What is the smallest possible value of the angle α?

Marek considered the law of gravity to be too down-to-earth.

During the upward motion, “the entire body rises”, because the points of contact between
the cones and the rods move upward; however, at the same time, the points of contact move
away from the base, causing the cone (more precisely, its center of mass) to move downward.
Even though the points of contact rise, the center of mass must, overall, descend. Therefore,
the second effect must be stronger than the first one. Since we are looking for an extreme
(limiting) value, we restrict ourselves to the case in which the two effects are equally strong.

For a horizontal displacement by a distance x, the points of contact between the cone and
the rods ascend by hascent = x tan(γ). At the same time, during such a displacement the cone
moves in the plane of the rods by x sec(γ)4, and the gap therefore widens by 2x sec(γ) tan(β/2).
In our case, if we increase the separation between the points of contact by r, its center of
mass descends by r tan(α/2)/2, because in the limiting case the center of mass and the points
of contact lie in the same vertical plane. Altogether, for a horizontal displacement by x, the
center of mass descends by

hdescent = x
tan
(

β
2

)
tan
(

α
2

)
cos(γ) .

For the cones to be able to move upward, the limiting case must satisfy

hascent = hdescent ,

tan α2 = sin(γ)
tan
(

β
2

) .
Thus, for the angle α it must hold that

α = 2 arctan

(
sin(γ)

tan
(

β
2

)) .

Marek Milička
marek.milicka@fykos.org

4The function sec(x) = 1/ cos(x).
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Problem GB . . . opaque glass
Let us consider a piece of glass of thickness d, which contains a dark dye that absorbs a portion
of the transmitted light. Suppose that the absorption coefficient depends linearly on the dye
concentration in the glass as µ = αw, where w is the concentration. If the glass, due to
a manufacturing defect, has the standard concentration of dye at the surface, but then the
concentration increases linearly by ∆w = βx, where x is the depth measured from the surface,
by what factor is the transmitted light reduced?

Petr was thinking whether he is going to be able to see anything at all.

We know that defect-free glass has a constant absorption coefficient µ = αw. We can therefore
use the empirical Beer-Lambert law, which states that the light intensity decreases exponentially
when passing through a homogeneous material as

I(x) = I0e−µx = I0e−αwx .

In the case of a non-homogeneous material (i.e., varying dye concentration in the defective
glass), we need a more detailed approach. The Beer-Lambert law can be expressed in differential
form as

dI(x) = −Iµ(x) dx ,

and since µ depends linearly on the concentration, in our case we have

dI(x) = −I (αw + αβx) dx .

This is a simple differential equation that can be solved by separation of variables.

dI
I

= − (αw + αβx) dx ⇒ ln I = −
∫

(αw + αβx) dx

ln I = −
(
αwx+ αβ

2 x2
)

+ C

I = I0 exp
(

−
(
αwx+ αβ

2 x2
))

If we denote the intensity transmitted through the entire defect-free plate as I and the inten-
sity transmitted through the entire defective plate as I ′ (assuming the same initial intensity),
the ratio is

I

I ′ = exp
(
αβ

2 d2
)
.

Petr Sacher
petr.sacher@fykos.org

Problem GC . . . then measure it
Pepa has always wanted to live as a 2D being on a disk. After a lot of time and effort, he has
finally achieved it. To celebrate his success, he has decided to measure the radius of the disk
on which he is living using a 2D aluminum ruler lying in the same plane as the disk.

However, Pepa has a nefarious friend Vojta who is envious of his success and therefore placed
his world on a stove in such a way that the temperature of the disk decreases exponentially with
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distance from the center according to the formula t(r) = tp +Ae−kr, from tmax = 160 ◦C in the
center to tmin = 60 ◦C at the edge of the disk, where tp = 20 ◦C denotes the room temperature.

How much shorter (in percent) will the radius measured from Pepa’s point of view be
compared to the true radius of the disk measured by Vojta? Assume that Vojta has a perfectly
rigid ruler, Pepa’s ruler has a constant coefficient of thermal expansion α = 2.4 · 10−5 K−1 and
correctly measures distance at the room temperature tp. Pepa was desperate.

First, let us imagine that we are trying to measure a length at a place with temperature t
using an aluminium ruler with the smallest measurable length division x0. If this temperature
were equal to the room temperature tp, it would be sufficient to simply count the number
of elementary divisions of the ruler, N , covered by the measured segment. From this, we
could determine the length of the segment as Nx0. However, if the temperature at the given
location differs from the room temperature, the entire ruler, as well as its elementary division,
will expand (or contract, respectively) to (1 + α(t − tp)) times the original length. Instead
of N elementary divisions, the measured segment will then cover N/(1 + α(t− tp)) elementary
divisions. To this number we assign the length Nx0/(1 + α(t− tp)) instead of the length Nx0,
meaning that we measure a length that is (1 + α(t− tp)) times smaller than the actual one.

Let us now return to the situation from the problem statement. We measure the radius of
a disk whose true radius is R. Its temperature decreases exponentially with radius according to
the relation t(r) = tp +Ae−kr, from the temperature tmax to the temperature tmin. Let us first
determine the values of the unknown constants A and k from the given information. For r = 0,
we must have t = tmax, so after substituting into the temperature expression we obtain

tmax = tp +A ,

from which we can easily express the constant A as A = tmax − tp.
At the edge of the disk, on the other hand, we have r = R and t = tmin, so

tmin = tp +Ae−kR .

After substituting A = tmax − tp and rearranging, we successively obtain

tmin − tp
tmax − tp

= e−kR ,

k = − 1
R

ln tmin − tp
tmax − tp

.

The dependence of temperature on radius thus becomes

t(r) = tp + (tmax − tp)
(
tmin − tp
tmax − tp

)r/R

.

Now imagine measuring the radius of this disk from its centre to the edge using an aluminium
ruler. The length of an elementary radial segment with true length dr, which we measure at
a distance r from the centre of the disk, will be

dr′ = dr

1 + α (tmax − tp)
(

tmin−tp
tmax−tp

)r/R
.
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The radius measured by Pepa will then be

R′ =
∫ R

0

dr

1 + α (tmax − tp)
(

tmin−tp
tmax−tp

)r/R
.

For simplicity, we introduce the substitutions β = α (tmax − tp), B = (tmin − tp)/(tmax − tp)
and x = r/R. After additionally expressing dr = R dx, the integral takes the form

R′ = R

∫ 1

0

1
1 + βBx

dx .

If we now cleverly rewrite unity in the numerator as 1 + βBx − βBx, the expression becomes

R′ = R

∫ 1

0

(
1 − βBx

1 + βBx

)
dx = R−R

∫ 1

0

βBx

1 + βBx
.

After the substitution u = 1 + βBx, from which we obtain du = βBx lnB dx, the term βBx in
the numerator cancels out and we obtain

R′ = R− R

lnB

∫ 1+βB

1+β

du
u

= R− R

lnB ln 1 + βB

1 + β
.

Compared to Vojta, Pepa measures a radius smaller by

R−R′

R
= ln 1 + α (tmin − tp)

1 + α (tmax − tp)/ln
tmin − tp
tmax − tp

.= 0.19% .

Tomáš Kubrický
tomas.kubricky@fykos.org

Problem GD . . . overturning a rectangular cuboid

c
a

b

Consider a hollow rectangular cuboid with a base of side
lengths a = 50.0 cm and c = 30.0 cm and height b = 30.0 cm.
The walls of the cuboid have negligible mass, but its entire
volume is filled with water and a spherical buoy of radius r =
= 8.00 cm made of a material with density ρ0 = 350 kg·m−3.
The buoy is attached to the center of the cuboid base by a mass-
less and volumeless string of length l = a/2 − 2r. What work
is needed to tip the cuboid over the edge c? Assume that the
tipping is performed very slowly.

Petr’s cuboid went crashing down.

First, we choose a suitable coordinate system. It turns out to be advantageous to choose it so
that the origin is on the edge about which we rotate the rectangular cuboid; the x- and y-axes
point in the horizontal and vertical directions, respectively, with the positive direction of the x-
axis pointing toward the cuboid. It suffices to solve the problem in two dimensions; therefore,
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we do not have to consider the z-axis. Now we determine the coordinates of the center of mass.
In general, for the j-th coordinate of the center of mass of a system, we have

tj =
∑

i
mixij∑
i
mi

,

where mi are the masses of the bodies composing the system and xij is the j-th coordinate of
the center of mass of the i-th body. In other words, the center of mass is the weighted average
of the coordinates of the centers of mass of the individual bodies, where the weights are the
masses of these bodies. Thus, for the x- and y-coordinates of the center of mass of our system,
we obtain

tx =
1
2a

2bcρ− 2
3πr

3a (ρ− ρ0)
abcρ− 4

3πr
3 (ρ− ρ0)

,

ty =
1
2ab

2cρ− 4
3πr

3 (a
2 − r

)
(ρ− ρ0)

abcρ− 4
3πr

3 (ρ− ρ0)
.

We do not know exactly where the center of mass of the water in the cuboid is located, so we
use the following trick: we consider the cuboid filled with water without the buoy, which has
its center of mass (as we would expect) in the center of the cuboid, and to it we add a body of
the same shape and position as the buoy with a (purely formal) negative density −ρ. Then, it
was sufficient to add the actual buoy with density ρ0.

Let us now imagine the cuboid as we begin to tilt it. Due to the buoyant force, the buoy
is always pulled upward. Let us parametrize all positions by the tilt angle of the cuboid with
respect to the surface φ. With a bit of geometry, we obtain the position of the center of mass
in this configuration

t′x =
1
2 (a cosφ− b sinφ) abcρ− 2

3πr
3a cosφ (ρ− ρ0)

abcρ− 4
3πr

3 (ρ− ρ0)
,

t′y =
1
2 (a sinφ+ b cosφ) abcρ− 4

3πr
3 (a

2 + a
2 sinφ− r

)
(ρ− ρ0)

abcρ− 4
3πr

3 (ρ− ρ0)
.

We now determine the limiting angle φM. We can determine it in two ways, either using the
derivative of t′y with respect to φ or from the condition t′x = 0. In both cases, we obtain

φM = arctan
(
a

b
− 4

3πr
3 1
b2c

(
1 − ρ0

ρ

))
.= 58.2◦ .

The work is calculated as

W = ∆E = g
(
abcρ− 4

3πr
3 (ρ− ρ0)

)(
t′y (φM) − ty

)
,

which can be further simplified to

W = aρg

2

(√(
abc− 4

3πr
3
(
1 − ρ0

ρ

))2 + (b2c)2 − b2c

)
.= 59.5 J .

Petr Sacher
petr.sacher@fykos.org
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Problem GE . . . networking
Consider a so-called multimode optical fiber in which an LED serves as the light source from
which information propagates. The diode is located at the center of a tube with diameter D =
= 62.5 μm and refractive index n = 1.48, and it emits light isotropically (equally in all direc-
tions). For simplicity, assume that the tube is surrounded by air and that the entire optical
link has a length of l = 1.00 km. Calculate the mean value of the arrival times of light rays
that were emitted at the same instant at the end of the cable. Consider only those light rays
that reach the destination. During a lecture on computer net-
works, Vlado was wondering why multimode cables are used only over relatively short distances.

Let us consider a single ray emitted by the LED at an angle φ with respect to the axis of
the cable. Let us first derive the condition under which the ray does not leave the cable at
its boundary, but is instead only reflected. Upon incidence on the interface, the ray forms an
angle π/2 − φ with the normal. Therefore, for total internal reflection to occur, the following
condition must hold

n sin
(
π
2 − φ

)
= n cosφ > n0 sin π2 ≈ 1 ,

where we have used the trigonometric identity sin(π/2 − x) = cosx as well as the refractive
index of air n0 ≈ 1. After rearranging and taking into account that the cosine function is
decreasing on the interval ⟨0, π/2⟩, we obtain the following condition for the angle φ:

φ < arccos
( 1
n

)
= φm

.= 47.5◦ (4)

Rays emitted at larger angles φm will also be partially reflected to some extent. However,
their intensity decreases with each reflection, and thus their contribution to the signal received
at the far end of the cable becomes negligible at large distances. For this reason, we do not
consider them in the remainder of the solution.

If the condition (4) is satisfied, the ray will form the same angle φ with the cable axis after
each reflection. As a result, total internal reflection will also occur at subsequent reflections,
since the ray will always make the same angle with the interface between the cable and the air.
The information propagates through the cable with refractive index n at a speed v = c/n. Since
the ray maintains a constant angle φ with the cable axis, it must, in fact, travel a distance x =
= l/ cosφ instead of the cable length l. The information, therefore, reaches the other end of
the cable after a time

t(φ) = x

v
= nl

c cosφ .

To determine the mean value of this time, we must also find what fraction of all rays
satisfying the condition (4) is emitted within a small angular interval ⟨φ,φ+ dφ). Let us
imagine a fictitious sphere of radius R centered at the LED, onto whose surface the rays emitted
isotropically from the diode fall uniformly. It then suffices to determine the ratio of the area
of the part of the sphere corresponding to this angular interval to the area of the part of the
sphere corresponding to the entire admissible angular interval ⟨0, φm). The part of the sphere
corresponding to the small angular interval ⟨φ,φ+ dφ) forms a thin spherical ring with inner
radius R sinφ and thickness R dφ, and thus with area

dS = 2πR sinφ ·R dφ = 2πR2 sinφdφ .
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The area of the part of the sphere corresponding to the entire admissible angular inter-
val ⟨0, φm) is then given by

S =
∫ φm

0
2πR2 sinφdφ = 2πR2 (1 − cosφm)

The fraction of rays that fall into the small angular interval ⟨φ,φ+ dφ) is therefore

dS
S

= sinφ dφ
1 − cosφm

.

We can now express the mean value of the time t. If we had only a finite number of
admissible angles φ, the mean value of the time t would be a weighted average of the times t(φ)
corresponding to the individual admissible angles φ, with the weights given by the fractions
of rays emitted at those angles. In the continuous case, an analogous relation holds, except
that instead of a sum in the weighted average, we must use an integral. At the same time,
the fraction of rays must be associated not with a single specific value of φ, but with a small
angular interval ⟨φ,φ+ dφ), as we have done above. The mean value of the time t in our case
is therefore

⟨t⟩ =
∫ φm

0

nl

c cosφ
sinφ dφ

1 − cosφm
= nl

c (1 − cosφm)

∫ φm

0

sinφ
cosφ dφ .

To evaluate the integral of the tangent, it is convenient to perform the substitution u = cosφ,
since after expressing dφ = − du/ sinφ, the sine cancels from the integral. The expression for
the mean value then becomes

⟨t⟩ = −nl
c (1 − cosφm)

∫ cos φm

1

1
u

du = −nl
c (1 − cosφm) ln (cosφm) = n2l

c(n− 1) ln(n) .= 5.97 μs .

Tomáš Kubrický
tomas.kubricky@fykos.org

Problem GF . . . indistinguishable gases
There is a mixture of two gases in a vacuum chamber at low pressure – nitrogen and carbon
monoxide, with a portion of them being ionized. We can identify the gases in a mass spectrom-
eter by the ratio of their charge to mass. However, the relative molecular mass of both gases is
very similar, approximately M = 28, and our spectrometer does not have sufficient resolution
to distinguish them. Some particles are ionized twice, which manifests as a signal at the posi-
tion M = 14. The ratio of the cross section of double ionization to the cross section of single
ionization is 0.015 for CO, and 0.090 for N2. The ratio of the cross section of the first ionization
of N2 to the first ionization of CO is then 0.83. We would like to determine the concentrations
of both gases from the intensity of the detected signal at the given positions. The signal is
measured as the amplified current of ions that strike the detector. We detected I28 = 210 μA
at the position with molecular mass 28, and I14 = 10.5 μA at the position 14. Determine the
ratio of the concentrations of carbon monoxide to nitrogen. Do not consider their mutual in-
teractions. Today at the lecture, today at the problem selection.
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In a mass spectrometer, individual particles are ionized so that their trajectories are influenced
by electric and magnetic fields in such a way that we can distinguish the individual particles
types. Charged particle trajectories are affected by the Lorentz force

F = ma = e (E + v × B) ,

where E is the electric field vector and B the magnetic induction vector. The acceleration, and
hence the particle’s trajectory, thus depend on the fields with a proportionality constant e/m.
Two particles with the same charge have different trajectories if they have different masses.
Therefore, we can separate species based on the ratio m/e. Doubly ionized particles then
appear in the spectrum as particles with half the mass.

According to the problem statement, we detect electric currents at the position correspond-
ing to particle mass 28 and at the position 14, which corresponds to double ionization of these
molecules. Let us denote the partial pressure of nitrogen by pN2

and the partial pressure of
carbon monoxide by pCO. The first‑ionization cross sections is denoted as σ1,N2

for nitrogen
and σ1,CO for carbon monoxide. Then the signal intensity at position 28 can be expressed as

I28 = k
(
σ1,N2

pN2
+ σ1,COpCO

)
,

where k is the proportionality constant between the number of detected ions and the number
of all ions. In our case, the intensity equals the current, because we measure the number of
detected charged particles, i.e., essentially the charge that has passed. Similarly, we can express
the intensity at position 14 as

I14 = 2k
(
σ2,N2

pN2
+ σ2,COpCO

)
,

where the numeral 2 in front of the entire parenthesis signifies that a single ion now carries
twice the charge.

We divide the first equation by the second equation and simplify

I28

I14
= 1

2
σ1,N2

pN2
+ σ1,COpCO

σ2,N2
pN2

+ σ2,COpCO
,

2I28

I14
=
σ1,N2

+ σ1,CO
pCO
pN2

σ2,N2
+ σ2,CO

pCO
pN2

,

2I28

I14
σ2,CO

pCO

pN2

− σ1,CO
pCO

pN2

= σ1,N2
− 2I28

I14
σ2,N2

,

pCO

pN2

=
σ1,N2

− 2I28
I14

σ2,N2

2 I28
I14
σ2,CO − σ1,CO

,

pCO

pN2

=
σ1,N2

σ1,CO

1 − 2I28
I14

σ2,N2
σ1,N2

2 I28
I14

σ2,CO
σ1,CO

− 1
.
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We only need to substitute the ratios given in the problem statement to obtain the result

pCO

pN2

= 0.83
2I28
I14

0.09 − 1
1 − 2 I28

I14
0.015

.= 5.4 .

Therefore, there is significantly more carbon monoxide than nitrogen in this atmosphere.

Jaroslav Herman
jardah@fykos.org

Problem GG . . . repulsive light
You have surely experienced walking out of a dimly lit building and suddenly being blinded by
the Sun. Calculate the force exerted by the Sun on the Earth due to its radiation. Assume
that the Earth’s surface is entirely composed of water, which means that a fraction of α = 0.31
of all incident radiation is perfectly reflected from the surface, while the rest of it is absorbed.

Vlado left the school and immediately turned back.

The solution to the problem is the sum of two effects — in the first, we consider that a frac-
tion 1 − α of the photons is absorbed, and in the second, that a fraction α of the photons is
reflected from Earth as from a mirror.

Since Earth is rotationally symmetric about the axis given by the Sun–Earth line, we can
parametrize the problem by the angle φ, which the line connecting Earth’s center and a point
on its surface makes with the Sun–Earth line. These points have the property that sunlight
shines on these locations on Earth at the same angle, namely φ from the surface normal. The
region on the surface of the sphere located between angles φ and φ+dφ corresponds to an area
element dA = 2πR⊕ sinφ ·R⊕ dφ.

We can model the interaction of photons with Earth as collisions. In the first case, a frac-
tion 1−α of the photons is inelastically absorbed by Earth; therefore, their momentum changes
by ∆p1 = 0 − p = −p. In the second case, an elastic collision happens according to the law
of reflection, according to which only the momentum component p⊥, perpendicular to the
surface at the point of reflection, changes. The momentum of α photons therefore changes
by ∆p2 =

(
p∥ − p⊥

)
−
(
p∥ + p⊥

)
= −2p⊥.

Next, we express the photon momentum in terms of the power P with which the Sun radiates
toward Earth at the Sun-Earth distance. For the momentum of N photons that strike Earth
during a time interval ∆t and have wavelength λ, the following holds

p = N
h

λ
= N

h
hc
E

= NE

c
= P∆t

c
,

where the relation for the photon energy E = hc
λ

was used.
The force with which the radiation acts on Earth can be calculated using Newton’s second

law,

F = ∆p

∆t = −
(

(1 − α)∆p1

∆t + α
∆p2

∆t

)
.

According to the law of conservation of momentum, the change in Earth’s momentum is opposite
in direction to the change in the photons’ momentum, so the minus sign was used in the equation
above. As a consequence, Earth is “pushed away” from the Sun by the radiation.
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Due to the symmetry of the situation, the force acts along the Sun–Earth line, which we will
hereafter call the “parallel direction”. With respect to the resulting force F, we will consider only
the change of momentum in the parallel direction (F∥). In practice, however, it is convenient
to introduce the radiation pressure instead of the force:

P = F

A
= 1
A

∆p
∆t = P

A

1
c

=: I
c
,

where I is the power carried by the radiation, per unit area oriented perpendicular to the rays,
at Earth’s distance from the Sun.

Let us consider the first case, in which all solar rays are absorbed. Since the photons
propagate in the parallel direction, their momentum change ∆p1 = p is in the same direction.
The pressure P in this case means that an element of force dF∥ acts on an area element dAeff
that is perpendicular to the rays. The area element dA makes an angle φ with the rays.
Therefore, we obtain dAeff by projecting dA into the direction perpendicular to the rays, which
gives

dAeff = dA cosφ = 2πR2 sinφ cosφ dφ .

Thus, the resulting force acting on Earth in the parallel direction is

F1∥ =
∫

hemisphere
P dAeff = P · 2πR2

⊕

∫ π/2

0
sinφ cosφ dφ = 2πPR2

⊕

∫ π/2

0

sin(2φ)
2 dφ

= 2πPR2
⊕ · 1

2 = P · πR2
⊕ .

We obtained the well-known result that, if parallel rays illuminate a sphere, then the effective
surface area of Earth in the perpendicular direction is πR2

⊕.
Let us now analyze the second, more complicated case. As indicated in the introduction,

the momentum change ∆p2 is perpendicular to the surface; therefore, it points in the radial
direction outward from Earth’s center at the given point of reflection (the situation is analogous
to the incidence of rays on a plane at an angle φ from the normal). The magnitude of ∆p2 equals
twice the momentum component perpendicular to the surface; that is, ∆p2 = 2p⊥ = 2p cosφ.
From ∆p2, however, we are interested only in the component parallel to the Sun–Earth line,
namely

∆p2∥ = ∆p2 cosφ = 2p cos2 φ = p (1 + cos (2φ)) .

Analogously to the first case, we must again take into account the effective area dAeff instead
of the total area dA. The resulting force is then

F2∥ =
∫

hemisphere
P (1 + cos (2φ)) dAeff = P · 2πR2

⊕

∫ π/2

0
(sinφ cosφ+ sinφ cosφ cos(2φ)) dφ

= 2πPR2
⊕

(∫ π/2

0

sin(2φ)
2 dφ+

∫ π/2

0

sin(4φ)
4 dφ

)
= 2PπR2

⊕ ·
(1

2 + 0
)

= P · πR2
⊕ .

We obtained a surprising result — the effective surface area for complete reflection is the
same as for complete absorption. It follows that, in fact, the resulting force acting on Earth
does not depend on the albedo at all.

61



Fyziklani 2026 20th year 13th of February 2026

At this point, it remains only to determine the value of the intensity I. The Sun radiates
with luminosity L⊙. This light propagates from the Sun equally in all directions; therefore, at
a distance r = 1 au, the power per unit area is

I = L⊙

4πr2 .

Finally, we obtain

F∥ = (1 − α)F1∥ + αF2∥ = I

c
πR2

⊕ = L⊙

4c
R2

⊕

r2
.= 5.8 · 108 N .

This force is much smaller than the gravitational force with which the Sun acts on Earth,
whose magnitude is ∼ 3.5 · 1022 N.

Vladimír Slanina
vladimir.slanina@fykos.org

Problem GH . . . charged ring
Kubo tried to create a trap for charged particles. For this purpose, he took a thin, uniformly
electrically charged ring with radius R = 1.0 cm and linear charge density λ = 9.0 ·10−6 C·m−1.
He then placed a charged particle with specific charge q/m = 5.2 · 108 C·kg−1 at its center. In
the direction perpendicular to the plane of the ring, this was unfortunately only an unstable
equilibrium position, so he slightly displaced the particle from the center only within the ring’s
plane. Determine the period of the particle’s initial motion around the center of the ring.

Kubo wished to analytically solve the integral from the problem “Faraday’s collector”.

x

r
R

ψϕ

To determine the period of small oscillations, we must first
determine the resultant force acting on the charged particle
due to the presence of the charged ring. The ring acts only
via Coulomb forces, but from each of its points. Let us denote
the displacement of the charged particle from the center of
the ring by x, and the distance of an element of the ring
(in the direction of ψ) from the particle by r. This distance
can be calculated using the law of cosines as r2 = R2 +
+ x2 − 2Rx cosφ, where φ is the angular coordinate of the
element on the ring with respect to its center. This angle can
be determined using the law of sines for the sides R and x.

R

sin(π− ψ) = x

sin(ψ − φ) ⇒ φ = ψ − arcsin
(
x

R
sinψ

)
,

cosφ = cos(ψ) cos
(

arcsin
(
x

R
sinψ

))
+ sin(ψ) x

R
sinψ =

√
1 − x2

R2 sin2 ψ cosψ + x

R
sin2 ψ .

By substituting this into the law of cosines, we obtain the distance r as a function of the angle ψ.
For small values of x, we can simplify the expression by neglecting terms of order O(x2).

r2 = R2 + x2 − 2Rx

√
1 − x2

R2 sin2 ψ cosψ − 2x2 sin2 ψ ≈ R2 − 2Rx cosψ, .
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x

r

dl

r+
dr

ψ
dψ

Next, we still need to express the length element of the ring dl in terms of the differential dψ.
We again compute this using the law of cosines.

dl2 = r2 +
(
r + dr

dψ dψ
)2

− 2r
(
r + dr

dψ dψ
)

cos dψ =
(

dr
dψ dψ

)2

+ r2 dψ2 + O
(
dψ3)

dl =

√
r2 +

(
dr
dψ

)2

dψ =
√
r2 + O(x2) dψ ≈ r dψ

The derivative of the function r(ψ) is of order O(x), and its square therefore behaves at least
as O(x2), so it can be neglected in comparison with the value of r2.

Now, nothing prevents us from calculating the total electric field acting on the charged
particle. Normally, we could compute it through vectors in 3D, but here we can exploit the
axial symmetry of the problem and restrict ourselves to the component of the field intensity in
the direction of the displacement x. We therefore include a prefactor cosψ.

|E| = 1
4πε0

∮
λ cosψ
r2 dl ≈ λ

2πε0

∫ π

0

cosψ
r

dψ ≈ λ

2πε0

∫ π

0

cosψ
R

(
1 + x

R
cosψ

)
dψ =

= λx

2πR2ε0

∫ π

0
cos2 ψ dψ = λx

2πR2ε0

∫ π

0

1 + cos(2ψ)
2 dψ = λx

2πR2ε0

[
ψ

2

]π
0

= λx

4R2ε0
.

In the calculation, we used the approximation r−1 ≈ R−1 (1 + (x/R) cosψ), which follows from
the expansion of r(x) and is valid for small values of x. In evaluating the final integral, we also
used the fact that the integral of cosine from 0 to π, as well as from 0 to 2π, is zero.

Finally, we only need to write down the equation of motion of the charged particle with
charge q and mass m, identify the equation of a harmonic oscillator, and determine the period
of small oscillations.

ma = − qλx

4R2ε0
= −mω2x ⇒ ω2 = qλ

4mR2ε0
,

T = 2π
ω

= 4πR
√
mε0

qλ

.= 5.47 · 10−9 s .

The sought period of small oscillations of the charged particle is approximately T .= 5.5 ns.

Jakub Kliment
jakub.kliment@fykos.org
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Problem HA . . . friction on an inclined plane
We have a point mass on an inclined plane with a variable slope in a homogeneous gravitational
field. The angle α between the plane and the horizontal plane is slowly increased to a value α1,
at which the point mass begins to move. Subsequently, the angle α is continuously decreasing
with an angular velocity ω = 1 ◦·s−1 in such a way that the axis of rotation of the plane passes
through the point mass. What distance along the inclined plane does the point mass travel
between its two stationary positions? The coefficient of static friction is fs = 0.65 and the
coefficient of dynamic friction is fd = 0.51. Dávid enrolled in a bachelor’s revision course.

The problem is solvable in two dimensions, so we introduce a coordinate system where the x-
axis is parallel to the inclined plane and the y-axis is perpendicular to it. By decomposing the
acting forces into these two directions, we obtain the following system of equations:

x : T + G = ma ⇒ mg sinα− T = ma ,

y : N + G = 0 ⇒ mg cosα−N = 0 ,

where T denotes the friction force, G the gravitational force, N the normal force exerted on the
point mass by the surface, m its mass, g the gravitational acceleration, and finally a denotes
the resulting acceleration with which the point mass moves.

At time t = 0, the angle α is exactly such that the forces in the x-direction balance out,
from which we obtain an equation for calculating the angle α1

mg sin(α1) = fsmg cos(α1) ⇒ α1 = arctan(fs) .

We know that as soon as the point mass starts to move, the angle α also begins to change
at a constant rate of ω. Therefore, α(t) = α(0) − ωt = α1 − ωt. At a general time t when the
point mass is moving, we obtain from Newton’s second law

mg sinα(t) − fdmg cosα(t) = ma ⇒ a = g(sin(α1 − ωt) − fd cos(α1 − ωt)) .

By integrating the last equation with respect to time, we obtain the relation for v(t)

v(t) = g

ω

(
cos(α1 − ωt) + fd sin(α1 − ωt)

)
+ C1 .

Using the condition that at time t = 0 the velocity is zero, we eliminate the integration con-
stant C1 and obtain

v(t) = g

ω

(
cos(α1 − ωt) − cos(α1) + fd(sin(α1 − ωt) − sin(α1))

)
.

From this equation, we can now calculate the time tmax at which the point mass comes to
rest again, i.e., when v(tmax) = 0. To isolate the time t in the equation, we first use the
sum formulas for trigonometric functions, sin(α1 − ωt) = sin(α1) cos(ωt) − cos(α1) sin(ωt) and
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cos(α1 − ωt) = cos(α1) cos(ωt) + sin(α1) sin(ωt). By substituting these and rearranging the
previous equation, we obtain

v(t) = g

ω

(
(cos(α1) + fd sin(α1)) (cos(ωt) − 1) + (sin(α1) − fd cos(α1)) sin(ωt)

)
= 0 ,

(cos(α1) + fd sin(α1)) (1 − cos(ωt)) = (sin(α1) − fd cos(α1)) sin(ωt) ,

tan
(
ωt

2

)
= 1 − cos(ωt)

sin(ωt) = sin(α1) − fd cos(α1)
cos(α1) + fd sin(α1) ,

ωt

2 = arctan
(

sin(α1) − fd cos(α1)
cos(α1) + fd sin(α1)

)
= arctan

(
fs − fd

1 + fdfs

)
,

tmax = 2
ω

arctan
(
fs − fd

1 + fdfs

)
.= 12.0 s .

In addition to the identity for the tangent of the half-angle, we also used the expressions for
the sine of the angle α1 as fs/

√
1 + f2

s and its cosine as 1/
√

1 + f2
s , which follow from the

relation α1 = arctan(fs).
Once we have expressed the time tmax, we can proceed to the final step – finding the

position x(tmax), which corresponds to the distance traveled by the point mass along the surface.
Similarly to how we found v(t) by integrating a(t), we now express x(t) by integrating v(t) once
more. We obtain

x(t) = g

ω2

(
sin(α1) − sin(α1 − ωt) − ωt cos(α1) + fd(cos(α1 − ωt) − cos(α1) − ωt sin(α1))

)
,

where the integration constant was determined from the condition x(0) = 0. Again, we use the
sum formulas for sine and cosine and rewrite the relation into the form

x(t) = g

ω2

(
(fd cos(α1) − sin(α1)) (cos(ωt) − 1) + (fd sin(α1) + cos(α1)) (sin(ωt) − ωt)

)
,

which is again analogous to the expression for v(t). Now it remains only to substitute for the
time tmax and simplify the result into its final form. In the simplifications, we use the identities

sin(2 arctan y) = 2y
1 + y2 and cos(2 arctan y) = 1 − y2

1 + y2 .

We thus obtain

x(tmax) = 2g
ω2

(
fs − fd√

1 + f2
s

− 1 + fdfs√
1 + f2

s
arctan

(
fs − fd

1 + fdfs

))
.= 27.7 m ,

where we substituted the angular velocity as ω = π/180 rad·s−1 .= 1.745 · 10−2 rad·s−1.

Jakub Kliment
jakub.kliment@fykos.org

Dávid Brodňanský
david.brodnansky@fykos.org
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Problem HB . . . dramatic amplification
We place a conducting, uncharged sphere of radius R = 7.5 cm into a homogeneous electric
field with intensity E = 333 V·m−1. Determine the maximum magnitude of the electric field in
the region.

Jarda noticed that when he sits next to the radio, it plays better.

When a conducting sphere is placed into an electric field, the charges rearrange themselves such
that the surface of the sphere becomes an equipotential surface. To find the field, of course, we
will use the following trick.

Consider inserting an electric dipole into the field instead. It has dipole moment p and is
oriented along the z-axis, which is also the direction of the electric field. The potential due to
a dipole is

φdip = 1
4πε

p · r
r3 = 1

4πε
pz

r3 ,

where p is the magnitude of the dipole moment and r is the position vector measured from the
origin at the center of the dipole. The total electric potential is

φtot = φdip − Ez =
( 1

4πε
p

r3 − E
)
z .

We can observe that for a certain distance R, for which the condition p = 4πεER3 holds,
the potential is zero independently of the value of z. Thus, around a dipole in a homogeneous
electric field, an equipotential surface in the shape of a spherical shell exists. If we were to place
a real conducting spherical shell on this surface, nothing would happen because the surface is
equipotential. If we then remove the dipole inside the conducting sphere, the charges on the
sphere rearrange themselves so that the surface is again equipotential. The situation outside
the sphere, however, does not change by removing the dipole, because the field lines must still
be perpendicular to the spherical surface. It can be shown that there is exactly one solution to
such a problem–and we have found it. Placing a conducting sphere into a homogeneous electric
field is (for the resulting field outside the sphere) equivalent to placing a dipole of suitable
magnitude instead of the sphere at its center.

From the problem statement, the radius of the sphere is R, so the appropriate dipole moment
is p = 4πεER3. Such a dipole produces an electric field with intensity

Edip = 1
4πε

(
3p · r
r5 r − p

r3

)
= ER3

(
3z · r
zr5 r − z

zr3

)
,

where we have introduced the unit vector in the direction of the z-axis as z/z, with p = p ·z/z.
The total electric field intensity is

Etot = Edip + E = ER3

zr3

(
3z

2

r2 r +
(
r3

R3 − 1
)
z

)
.
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We are looking for the maximum magnitude of the electric field, which is equivalent to finding
the maximum of the square of this magnitude and then taking the square root at the end. We
therefore compute

E2
tot = Etot · Etot =

(
ER3

zr3

)2
(

9z
4

r4 r
2 +
(
r3

R3 − 1
)2

z2 + 6z
2

r2

(
r3

R3 − 1
)
z2

)
=

=
(
ER3)2

(
3z

2

r8 + 1
R6 − 2

R3r3 + 1
r6 + 6 z2

r5R3

)
.

Now consider a sphere of radius r > R. On each such sphere, the field magnitude is maximal
at the points where z is maximal, i.e., for z = r. Substituting z = r, we obtain

E2
tot =

(
ER3)2

( 4
z6 + 1

R6 + 4
z3R3

)
.

This function decreases rapidly with increasing z. It is therefore evident that the maximum
magnitude of the electric field occurs just at the surface of the sphere, i.e., at the distance z = R.
Substituting and taking the square root of the previous expression, we obtain the result

Emax = 3E = 999 V·m−1 ,

which does not depend on the radius of the sphere or on anything else.

Jaroslav Herman
jardah@fykos.org
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