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Problem AA . . . jellyfSIh
During one of his explorations, the space traveler Vojta stumbled upon a planet inhabited
by a unique species of intelligent jellyfish. Since you hardly ever see anything like that, he
immediately began to explore this world. He learned, for example, that the inhabitants were
very skilled in physics. After observing them for a while, he discovered that their equivalent of
the SI system had, among others, the quantities voltage, charge, and frequency. He was also
able to determine the following conversion relationships.

voltage: 1 ≀ .= 541 V , charge: 1⊛ .= 0.301 C , frequency: 1⌣ .= 2.93 Hz .

Before taking off, a resident asked him about his rocket. Vojta, eager to impress, excitedly
planned to tell him that his rocket had 800 GW of power – but realized that the jellyfish
wouldn’t understand. Express the power of Vojta’s rocket in units used by jellyfish.

Volta would like to live like a jellyfish.

We aim to express the unit of power, the watt, in the units available to us – in volts, coulombs,
and hertz. Once we know this expression, we can proceed much as we would, for example, to
convert meters per second to miles per hour, which will be enough to plug in the conversion
relations.

To find that expression of the watt, we need to compare the dimensions of the units available
to us. We’ll express everything first in the base SI units.

1 V = 1 kg·m2·s−3·A−1 , 1 C = 1 A·s , 1 Hz = 1 s−1 , 1 W = 1 kg·m2·s−3 .

From these breakdowns, it is not difficult to see that 1 W = 1 V · 1 C · 1 Hz. If we add the
extraterrestrial units, we get

1 W = 1
541 ≀ · 1

0.301 ⊛ · 1
2.93 ⌣

.= 0.00210 ≀ · ⊛ · ⌣.

We can easily get the result 800 GW .= 1.68 · 109 ≀ · ⊛ · ⌣.

Vojtěch David
vojtech.david@fykos.org

Problem AB . . . bathing in a bathtub
Danka is filling her bathtub. From the tap, Q = 3.00 dl·s−1 of water flows into it. For how long,
at most, can Danka fill the bathtub to the point where she can fully immerse herself without the
water spilling over the tub’s edge? The bathtub has an elliptical bottom with a major semi-axis
of length a = 70 cm and a minor semi-axis of length b = 35 cm. The height of the walls of the
tub is h = 50 cm and the walls are perpendicular to the bottom. Danka weighs m = 55 kg.
Consider the density of the human body after inhalation ρD = 945 kg·m−3. Give the result in
the form mm:ss. Danka was filling her bathtub.

The volume of the bathtub is calculated as the product of the area of its base and the height
of the bathtub. Since the base is an ellipse, we calculate its area using the formula S = πab.
Then the volume of the bath is

V = πabh .
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The volume of Danka’s body can be calculated simply as

VD = m

ρD
.

The volume of water that can be filled into the bath is then given by the difference between
the volumes of the bath and Danka’s body, which is

Vv = V − VD = πabh− m

ρD
.

At the same time, Vv = Qt, where Q is the volumetric flow rate of water into the bath and t is
the filling time we are searching for. Putting the last two relations as equal, we only need to
express the time and plug in the numerical values

t = V − VD

Q
=
πabh− m

ρD

Q
,

t
.= 1090 s = 18 min 10 s .

Danka can fill the tub for a maximum of 18 minutes and 10 seconds.
Daniela Dupkalová
daniela@fykos.org

Problem AC . . . panic at the escalators
You might find yourself ascending an escalator when you suddenly realize the need to backtrack.
The escalators travel at a speed u = 0.65 m·s−1 and you are able to maintain a running speed v =
= 6.0 km·h−1. In what greatest distance from the bottom of the stairs is it still worth turning
around and running down the stairs versus running up and then switching to the escalator going
down and running down it? Write the result as a ratio to the total length of the escalators.

Disregard the time spent transitioning to the other escalator at the top and suppose that you
run upwards and downwards equally fast (ascending is more tiring while descending demands
increased attentiveness). Additionally, assume the absence of any obstacles on the stairs.

Karel wondered what to do.

Let x be the required distance from the start of the stairs and l the length of the escalator.
Next, we will denote the time it will take a person to turn around and run down against the
motion of the stairs by t1. In this scenario, the person will be moving relative to the ground at
a velocity of v − u

t1 = x

v − u
.

Then, let t2 represent the time it will take him to ascend the remaining part of the escalator
on which he is currently standing at a speed of v + u relative to the ground and then descend
again on the other escalator at a speed of v + u. Therefore

t2 = l − x

v + u
+ l

v + u
= 2l − x

v + u
.
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In the point x, the times t1 and t2 are the same. Thus, it is sufficient to put the expressions for
both times into the equation and express the ratio x/l

x

v − u
= 2l − x

v + u
,

x(v + u) = (2l − x)(v − u) ,
x(v + u) + x(v − u) = 2l(v − u) ,

2xv = 2l(v − u) ,
x

l
= v − u

v
= 1 − u

v
,

x

l
= 0.61 .

We can see that it is worth turning around and coming back if we are at most at a distance
from the top of the stairs equal to 0.61 the length of the escalator.

Daniela Dupkalová
daniela@fykos.org

Problem AD . . . storing heat in liquids
We would like to store energy in a liquid by heating it by a fixed temperature difference ∆T
and then store it in a thermally insulated container for a fixed time. The container has a limited
volume and we would like to store as much energy in it as possible. Which is better suited for
energy storage, water, or mercury? How many times better? For the result, give the ratio of the
heat stored in water to the heat stored in mercury. Karel was thinking about energy storage.

Let us denote the volume of the container V . For each of the liquids, we can determine its mass
in the container from its density ρ as m = ρV . The heat stored by the liquid in the container
is then obtained from the calorimetric equation as

Q = mc∆T = ρcV∆T ,

where c is the specific heat capacity of the liquid. The ratio of the heat stored in water to the
heat stored in mercury is given as

w = Qwater

QHg
= ρwatercwater

ρHgcHg
.

Using the values ρwater = 0.998 g·ml−1, ρHg = 13.5 g·ml−1, cwater = 4.184 J·g−1·K−1, cHg =
= 0.14 J·g−1·K−1 we get a value for the ratio w .= 2.21. Thus, we see that by using water we
store about twice as much energy in the container compared to mercury.

Jozef Lipták
liptak.j@fykos.org
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Problem AE . . . sheet shears

α

A sharp, heavy, straight blade is dropped from above (like a guil-
lotine) from h = 8 m on very thin paper. The paper lies horizon-
tally, the blade falls, and its underside is inclined to the horizon-
tal plane by an angle α = 4 · 10−5 mrad. What is the speed of
the point in which the paper is cut? Neglect the drag forces and
the deceleration of the blade due to interaction with the paper.

Jarda used to build paper cutouts.

From the conservation of mechanical energy, the vertical speed of the blade is

mgh = 1
2mv

2 ⇒ v =
√

2gh = 12.53 m·s−1 .

The horizontal speed of the point where the cutting edge meets the paper is (clearly visible in
the figure from the problem statement)

u = v

tanα = 3.13 · 108 m·s−1 .

Therefore, the paper is being cut faster than the speed of light. However, the result is not
physically meaningless because no information propagates at this speed. Moreover, the speed
would be infinite if the blade were perfectly aligned with the horizontal plane!

Jaroslav Herman
jardah@fykos.org

Problem AF . . . looking for a cyclist
During a FYKOS party, Viktor decided to get some fresh air and went for a bike ride. However,
he did not mention that to anyone, and after a while, a group of other organizers decided to
look for him. They immediately found bike tracks in the snow and it was obvious to them that
in such weather, nobody except Viktor would ride a bike. To continue the search, they needed
to find out in which direction he went and also the distance between the centers of his bike’s
(equally large) wheels. Determine these parameters from the provided picture of the tracks.

1 m

Viktor’s bicycle is still taking up space in the hallway.

Let’s assume that a bike has two identical wheels, the front wheel can freely turn, while the
rear wheel is fixed in the bike frame. Due to this, the plane of the rear wheel contains the
center of the front wheel. The direction of the rear wheel must always be towards the front
wheel. This logic also holds for points of contact between the wheels and the ground, not just
their centers. Therefore, we can conclude that the tangent to the track of the rear wheel always
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points towards the point on the front wheel’s path, and especially that the distance between
these points is constant and equal to the distance between the wheels.

For the moment, let’s assume that the dashed line corresponds to the front wheel, and focus
on the top right curve of the full line. When this curve is created by the rear wheel, for the
tangent to point towards the other track, the cyclist would have to ride left to right on the
right side of the curve. Similarly, however, he would need to ride right to left on the left side of
the curve. It is clear that the rear wheel corresponds to the dashed line and the front wheel to
the full line.

If the cyclist was moving left to right, then immediately on the left side, the tangent to the
dashed line would give us a ray which intersects the full line only at the other side of the picture
(if at all). Elsewhere, we would get much smaller distances, and also considering the scale, we
can conclude that this option cannot be correct. The cyclist must have been going right to left.

To measure the distances, we start by placing the ruler on the right side. We find out
that the distance between the wheels is a bit greater than one meter. This lets us exclude
incorrect data, which could happen if a tangent crosses the full line multiple times, from the
next measurements.

From a single measurement, however, due to limited size of the picture and inaccuracy of
determining the tangent, we might be unable to find the correct solution. In order to increase
the probability of success, we should repeat the measurement multiple times in different places.

We have measured values 3.35 cm, 3.20 cm, 3.25 cm, 3.25 cm, 3.30 cm, 3.40 cm, 3.60 cm and
the length of the scale 2.95 cm. The average of these values is (3.34±0.05) cm, which corresponds
to the distance between the wheels (3.34±0.05)/2.95 m = (113±2) cm. The correct result should
be 110 cm, so we were quite successful.

1 m

Fig. 1: Example of a possible solution.

Jaroslav Herman
jardah@fykos.org

Problem AG . . . clean energy of tomorrow
The controlled fission reaction is a process in which neutrons merge with the uranium-235
nuclei, which then fission into lighter elements, releasing more neutrons in the process. But
there’s a catch – the reaction works best at low neutron energies (0.025 eV), while the neutrons
released in a fission reaction are fast (energies on the order of MeV). Therefore, a material to
slow down the neutrons, called a moderator, is used in nuclear reactors. It must meet special
requirements – in particular, it must have light nuclei so that neutrons lose as much energy
as possible in elastic and inelastic collisions, and it must not absorb neutrons. The Czech
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nuclear power plants Temelín and Dukovany use water as a moderator, in which neutrons are
slowed down by collisions with hydrogen nuclei. Assume that a fast neutron undergoes an elastic
collision with a stationary hydrogen nucleus. What is the largest percentage of its kinetic energy
that the fast neutron can lose in the collision, when considering the same mass of proton and
neutron?

This problem is brought to you by CEZ Group.
Jindra was pondering about losses of energy.

Substances used as moderators are, for example, water (hydrogen), heavy water (deuteri-
um/heavy hydrogen) or graphite (carbon). The nuclear reactors at Temelín and Dukovany
are pressurised water reactors. This type of reactor uses ordinary water as a moderator. The
advantage of water as a moderator is that it can simultaneously be used to cool down the
reactor and to heat up the water in the secondary cooling circuit. The steam in the secondary
circuit is then used to rotate the turbines to generate electricity. The Dalešice reservoir serves
as a source of cooling water for the Dukovany power plant and the Hněvkovice reservoir serves
as a source of cooling water for the Temelín power plant. It should be stressed here that the
water from the water tanks is not used directly in the reactor as a moderator, but is used to
cool the steam in the secondary cooling circuit. Most of the hydrogen in water molecules is light
hydrogen 1

1H with one proton in the nucleus. The isotope 2
1H (deuterium) with one proton and

one neutron in the nucleus is only approximately 1 atom out of 6 400.
In particle physics, the unit of energy commonly used is the electron volt 1 eV = 1.602·10−19 J.

Multiples of electron volts are also used, kiloelectron volt 1 keV = 1 000 eV, megaelectron
volt 1 MeV = 1 000 000 eV, and others. The rest mass of the proton is mp = 1.672 6 · 10−27 kg =
= 938.27 MeV·c−2. The rest mass of the neutron is slightly higher mn = 1.674 9 · 10−27 kg =
= 939.57 MeV·c−2, but for this problem we will assume that the proton and neutron have the
same mass. We have expressed this in units of megaelectron volts per speed of light squared,
which you can verify has a dimension of mass, and 1 MeV·c−2 = 1.783 · 10−30 kg.

First of all, we need to clarify the question whether it is correct to calculate the collision
of a neutron with a proton in a hydrogen nucleus and whether the rest of the water molecule
will interfere with the collision process. The binding energy of the H−O bond in the water
molecule is 5.5 eV. The binding energy of the electron to the hydrogen nucleus is 13.6 eV. If the
neutron arrives with a much higher kinetic energy than these two values, then we can think of
the hydrogen nucleus (proton) as a free particle that is not affected by the rest of the water
molecule. Since, according to the information in the problem statement, a neutron is involved in
the collision (kinetic energy on the order of MeV), it is OK to think of the neutron as colliding
with a free proton.

Next, we must verify that the special theory of relativity does not apply here (it is ne-
glectable). The relation for relativistic kinetic energy is

Ek = (γ − 1)mc2 , (1)

where γ is the Lorentz factor, m is the rest mass of the object and c is the speed of light. The
Lorentz factor depends on the velocity of the object v according to the relation

γ = 1√
1 − v2

c2

.
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If the γ − 1 term in the relation (1) is much smaller than 1, then the particle is not relativistic
and thus we can use the relation for kinetic energy from classical physics

Ek = 1
2mv

2 .

The average neutron released in the fission of a uranium-235 nucleus has kinetic energy En,k ≈
≈ 2 MeV. For it holds

γ − 1 = En,k

mnc2
.= 2.12 · 10−3 ≪ 1 .

Hence it can be considered as a non-relativistic particle.
In the elastic collision of a neutron with a proton, kinetic energy and momentum are con-

served. As mentioned in the problem statement, we will consider that the masses of the neutron
and the proton are equal to mn ≈ mp = m0. The initial kinetic energy Tn,1 and momentum pn,1
of the neutron are

Tn,1 = 1
2m0v

2
n,1, pn,1 = m0vn,1 ,

where vn,1 = (vn,1; 0; 0) is the velocity of the neutron as it approaches the stationary proton.
For simplicity, we have chosen the positive direction of the x-axis to be parallel to the neutron
velocity vector. The initial kinetic energy Tp,1 = 0 and momentum pp,1 = 0 are zero.

After the collision, the neutron flies away with the velocity vn,2 and the proton with the
velocity vp,2. These velocities must satisfy the following system of equations

1
2m0v

2
n,1 = 1

2m0v
2
n,2 + 1

2m0v
2
p,2 ,

m0vn,1 = m0vn,2 +m0vp,2 .

This system has infinitely many solutions vn,2 and vp,2, but we are only interested in the
solution where the neutron flies away with the lowest kinetic energy. And finding that solution
is not difficult. By assuming equal masses for the proton and neutron, we can truncate m0 in
both equations, so we are just comparing the velocities. We can see the trivial solution vn,2 = 0
and vp,2 = vn,1, in which the neutron loses all its kinetic energy. Since kinetic energy cannot
become negative, this answers the question of what is the largest percentage of kinetic energy
a neutron can lose. Thus, in an ideal collision geometry, the neutron will lose all of its kinetic
energy, i.e. 100 %.

Appendix: General solution of elastic collision of two solid objects
In this problem, we found it very helpful to consider the masses of the proton and the neutron
to be equal. But how should we solve the problem if we took into account the different masses
of the particles? What if the proton had a non-zero initial velocity?

Consider a particle A with mass mA, and initial velocity vA,1 and a particle B with mass mB,
and initial velocity vB,1. These particles collide and fly away with velocities vA,2, and vB,2. In
an elastic collision, kinetic energy and momentum are conserved

1
2mAv

2
A,1 + 1

2mBv
2
B,1 = 1

2mAv
2
A,2 + 1

2mBv
2
B,2 ,

mAvA,1 +mBvB,1 = mAvA,2 +mBvB,2 .
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This equation has infinitely many solutions for the velocity vectors vA,2, vB,2 and it is not
simple to identify at least one solution, let alone the one with the lowest kinetic energy of the
departing particle A. The problem is greatly simplified if we go to the reference frame associated
with the center of gravity of both solid objects. The centre of gravity in the laboratory system
moves at the speed of

vt = mAvA,1 +mBvB,1

mA +mB
.

We switch to the centre of gravity reference frame (the velocities in it will be denoted by u) by
subtracting the centre of gravity velocity from the velocities v relative to the laboratory frame

u = v − vt . (2)

In the centre of gravity reference frame, the total momentum of both particles is equal to
zero

pt = mAuA,1 +mBuB,1 = 0 ,

which can be verified by substituting for u from the relation (2). The vectors of the initial
particle velocities uA,1, uB,1 lie on the same line and point in opposite directions. Similarly, the
vectors of the final velocities uA,2, uB,2 lie on the same line and point away from each other,
although they are not necessarily on the same line as the initial velocities. The two lines define
a plane, so the collision of two particles in a center of gravity frame is a phenomenon taking
place in a 2D plane.

Even in a centre of gravity reference frame, the collision is governed by the laws of conser-
vation of energy and momentum

1
2mAu

2
A,1 + 1

2mBu
2
B,1 = 1

2mAu
2
A,2 + 1

2mBu
2
B,2 ,

mAuA,1 +mBuB,1 = mAuA,2 +mBuB,2 = 0 .

The only possible solution is that the magnitudes of the initial and final velocities are equal

|uA,1| = |uA,2| = uA,1 = uA,2 , |uB,1| = |uB,2| = uB,1 = uB,2 .

The direction of the final velocity vector is a free parameter of the collision. To determine
it, we would need to find additional information about what the impulse vector was during
the collision. However, it is easier to find a solution in the center of gravity frame where the
particle A flies away with the lowest possible kinetic energy in the laboratory frame.

We choose the coordinate system so that the x-axis lies parallel to the direction of the initial
particle velocities and the y-axis lies in the plane of the collision. The initial and final particle
velocities are

uA,1 = uA(1; 0; 0) ,
uB,1 = uB(−1; 0; 0) ,
uA,2 = uA(cos θ; sin θ; 0) ,
uB,2 = uB(− cos θ; − sin θ; 0) ,

where θ is the angle between the end and initial velocity vectors of particle A.
In the laboratory reference frame, particle A will fly away with the velocity

vA,2 = uA,2 + vt .
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The kinetic energy of the particle A will be the lowest when the square of the velocity

|vA,2|2 = (uA cos θ + vt,x)2 + (uA sin θ + vt,y)2

will be the lowest. In this case, the components of the centre of gravity velocity vt,x, vt,y must
be expressed relative to the axes of the centre of gravity coordinate system. In other words, the
origin of the center of gravity coordinate system moves at the velocity vt.

In the case of a neutron with a mass of mn striking a stationary proton with a mass of mp,
the direction of the x axis in the center of gravity frame is the same as the direction of the x axis
in the laboratory frame, so the velocity of the center of gravity frame relative to the laboratory
frame is

vt = mnvn,1

mn +mp
= mnvn,1

mn +mp
(1; 0; 0) .

The velocity of a neutron in a center of gravity reference frame is

un = vn,1 − vt = vn,1(1; 0; 0) − mnvn,1

mn +mp
(1; 0; 0) = mpvn,1

mn +mp
(1; 0; 0) .

The square of the final velocity of the neutron in the laboratory system

|vn,2|2 = (un cos θ+vt,x)2+(un sin θ+vt,y)2 =
(
mpvn,1 cos θ
mn +mp

+ mnvn,1

mn +mp

)2

+
(
mpvn,1 sin θ
mn +mp

)2

is the lowest for θ = 180◦. Thus, the neutron loses the most kinetic energy in a head-on collision
when it rotates direction by 180◦ in the center of gravity frame. Accounting for the different
masses of the neutron and the proton, the neutron would lose at most

η = 1 −
(
mn −mp

mn +mp

)2
.= 99.999953 %

of its kinetic energy.

Jindřich Jelínek
jjelinek@fykos.org

Problem AH . . . speed up at crossroads
During his last car trip, Karel was wondering how much time he would save if he was accelerating
(and also decelerating) twice as much as he did. Karel was driving in the following uniform ways
during the following segments of the trip:

• t0 = 9.0 min of standing still,
• t1 = 8.0 min of uniform acceleration from v0 = 0 km·h−1 to v50 = 50.0 km·h−1,
• t2 = 8.0 min of uniform deceleration from v50 to v0,
• t3 = 12.0 min of driving with uniform speed v50,
• t4 = 4.0 min of uniform acceleration from v50 to v90 = 90.0 km·h−1,
• t5 = 4.0 min of uniform deceleration from v90 to v50 a
• t6 = 15.0 min of driving with uniform speed v90.
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Do not forget that Karel has to drive along the same path from start to end (so the same
speed limits apply). Also assume that all other driving conditions are the same (e.g. the time
of waiting at crossroads does not change and the road is otherwise empty) and Karel is trying
to drive as fast as possible within speed limits in both cases.

Karel was wondering if it is worth doing.

The time of the original trip can be found easily as

T = t0 + t1 + t2 + t3 + t4 + t5 + t6 = 60 min .

We will denote the times during the second trip, with double acceleration, by the prime symbol.
The first time t′0 = 9 min is directly given in the problem statement, since that obviously does
not change.

Next, we should realize that when moving with uniform acceleration, the traversed distance
is generally

s = v0t+ 1
2at

2 ,

where v0 is the initial speed, a is the acceleration and t is time. If we are given the minimum
and maximum speed between which we are accelerating and we need to spend the same time
on this motion, the traversed distance is always the same, whether we are accelerating once or
multiple times. This can be shown using the additional formula

v = v0 + at ,

where v is the final speed after time t. Then we see that if v and v0 are constant and we split the
time t into N identical time segments, the resulting acceleration needs to be Na. The traversed
distance is the sum of distances

s =
N∑

i=1

(
v0

t

N
+ 1

2Na
(
t

N

)2
)

= N
( 1
N
v0t+ 1

N

1
2at

2
)

= v0t+ 1
2at

2 ,

which is the same distance. This is why we could simply put total times spent on the segments
of the trip into the problem statement without specifying in how many spots acceleration was
involved. On the other hand, if we are not limited by the time spent on accelerating, but want
to accelerate on some path and can accelerate twice as fast, we reach the goal somewhat faster.

We need to know the lengths of segments at which speed is limited to v50 = 50 km·h−1 and
where it is limited to v90 = 90 km·h−1. From the logic of the problem statement, we may assume
that the speed limit of 50 km·h−1 is at the segments traversed during times t1, t2 and t3, while
the limit of 90 km·h−1 is at the segments traversed during t4, t5 and t5.

The distances traversed during times t1 and t2 are identical (it does not matter if we are
accelerating from the first speed to the second one or decelerating from the second speed to
the first one, when the times of accelerating and decelerating are the same). The initial speed
is zero, so the formula simplifies to

s1 = s2 = 1
2
v50

t1
t21 = 1

2v50t1
.= 3.3 km .

The distance traversed during the time t3 is obtained as

s3 = v50t3 = 10 km .

11



Fyziklani 2024 18th year 16th of February 2024

Similarly, the distances traversed during times t4 and t5 are the same

s4 = s5 = v50t4 + 1
2
v90 − v50

t4
t24 = 1

2 (v90 + v50) t4
.= 4.7 km .

Again, we simply obtain the last segment of the trip

s6 = v90t6 = 22.5 km .

The segments with highest permitted speeds v50 and v90 respectively then are

s50 = s1 + s2 + s3 = v50 (t1 + t3) .= 16.7 km ,

s90 = s4 + s5 + s6 = v50t4 + v90 (t4 + t6) .= 31.8 km .

Now we can start solving the situation with double acceleration. The time of accelerating
to v50 decreases to

t′1 = v50

2a = 1
2 t1 = t′2 = 4 min ,

which is half of the original time. Similarly, in the case of accelerating from v50 to v90

t′4 = v90 − v50

2a = 1
2 t4 = t′5 = 2 min .

We still need to calculate the time of moving with speed v50 and the time of moving with
speed v90 – for this, in both cases we first need to find the distance traversed while accelerating

s′
1 = s′

2 = 1
2
v50

t′1
t′1

2 = 1
2v50t

′
1 = 1

4v50t1
.= 1.7 km ,

s′
4 = s′

5 = v50t
′
4 + 1

2
v90 − v50

t′4
t′4

2 = 1
2 (v90 + v50) t′4 = 1

4 (v90 + v50) t4
.= 2.3 km ,

and then we calculate the distances and times of moving with uniform speed

s′
3 = s1 + s2 + s3 − s′

1 − s′
2 = v50

(1
2 t1 + t3

)
,

s′
6 = s4 + s5 + s6 − s′

4 − s′
5 = 1

2v50t4 + v90

(1
2 t4 + t6

)
,

t′3 = s′
3

v50
= 1

2 t1 + t3 = 16 min ,

t′6 = s′
6

v90
= 1

2
v50

v90
t4 + 1

2 t4 + t6
.= 18.1 min ,

The total time is

T ′ = t′0 + t′1 + t′2 + t′3 + t′4 + t′5 + t′6
.= 55.1 min ,

so the difference which the problem statement is asking for can be calculated as

∆T = T − T ′ = 1
2

(
t1 + t4

(
1 − v50

v90

))
.= 4.9 min .

Driving along the same path with double acceleration would save approx. 4.9 min of time,
which is approx. 8 %. This only holds under the assumption that Karel is otherwise waiting for
equally long times and can freely speed up and slow down.

Karel Kolář
karel@fykos.org
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Problem BA . . . lonely little prince
As the little prince was getting bored on his spherical asteroid B 612, he thought throwing
a ball with himself could be fun. He throws the ball from a height of 1.5 m above the ground
and wants to catch it at the same height after the ball goes around the entire asteroid. How
long does one such throw take? Assume that the asteroid B 612 has a radius of 10 m and its
density is the same as that of the Earth. Terka missed people.

Since the little prince wants to catch the ball at the same height as the one from which he
threw it, we use the formula for circular velocity

vk =

√
GM

r
,

where G is the gravitational constant, M is the mass of the asteroid around which the ball
orbits at circular velocity, and r is the distance from its center. The mass of the asteroid B 612
can be calculated from the fact that it has the same density as the Earth

ρp = ρZ ,
mp

Vp
= mZ

VZ
,

mp = mZ

4
3πr

3
p

4
3πr

3
Z
,

mp = mZ

(
rp

rZ

)3
.

The last formula that will be useful is the one for the time of one orbit at velocity v along
a circular trajectory of radius r

t = 2πr
v

.

After substituting all the known relations into the last formula, we obtain the equation

t = 2π (rp + r0)√
GmZ(rp/rZ)3

rp+r0

,

where r0 is the height above the surface from which the little prince throws the ball. This
formula can also be simplified to

t = 2π√
GmZ

(
rZ (rp + r0)

rp

) 3
2

.

Here we may note that if we were throwing from the surface of the asteroid, the orbital time
would be identical for all bodies with the same density, regardless of the radius of the asteroid.

Finally, we just have to plug in the specific values. The time of one orbit of the ball around
the little prince’s asteroid is

t = 6 251 s .= 1.7 h .

Tereza Voltrová
tereza.voltrova@fykos.org
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Problem BB . . . repulsive David
David repels girls. Thus, he decided to charge himself up with a charge of 0.001 C. What charge
would a girl need to have for the electric force to be greater than David’s repulsive force, which is
inversely proportional to the square of the distance with the proportionality constant 160 N·m2?

David can’t find a girlfriend.

Since David’s repulsive force is inversely proportional to the distance, we can write it in the
form FDavid = φ/r2, where φ is a constant from the problem statement. We are interested in
when the equality of forces FDavid = FC occurs. Let’s expand the formula as follows

φ

r2 = 1
4πε0

|q1 · q2|
r2 .

We need to calculate q2, and since equal charges repel each other, q2 will be negative. This
allows us to drop the absolute value and adjust the formula to

q2 = −4πε0φ

q1
= −1.78 · 10−5 C .

David Škrob
david.skrob@fykos.org

Problem BC . . . student’s
What is the minimum necessary length of copper wire, in order to be able to use it for heat-
ing? The socket has an AC voltage of 230 V, and the cross-section of the wire is 5 mm2. Our
circuit breakers carry a maximum current of 6 A. The specific electrical resistance of copper
is 0.0178 Ω·mm2·m−1. Lukáš complained about his room being cold.

First, let’s calculate the resistance at which the current 6 A will flow. Using Ohm’s law, we get

R = U

I
.

Next, let’s determine how long the wire must be to have the required resistance

R = ρ
l

S
,

where ρ is the specific electrical resistance of copper, S is the cross-section of the wire and l is
its length. By comparing the two equations, we obtain

ρ
l

S
= U

I
.

From the relation above, let’s express l and plug in the given values

l = S

ρ

U

I
= 10.8 km .

David Škrob
david.skrob@fykos.org
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Problem BD . . . spring warm-up
Danka and Dano utilize a straightforward exercise machine designed to strengthen their arms –
consisting of two handles (of negligible length) connected by parallel springs. The number of
springs is easily adjustable. All the springs employed possess a stiffness of k and a rest length
of l0. When Danka applies a force F and uses two springs in the machine, she elongates the
machine to a total length of l1. To what overall length does the stronger Dano stretch the
machine if he incorporates three springs into the apparatus and applies a force of 2F? Express
the result solely in terms of l0 and l1. Karel created a problem to exercise.

The general relationship between a force F acting on a spring (with stiffness k) elongated by ∆l
is

∆l = F

k
.

When connecting the springs in parallel, the force gets distributed between them. Consequently,
when we extend all springs of the same stiffness by the same length, the force is evenly dis-
tributed, and their stiffness effectively combines. In other words, for the elongation in Danka’s
case, we can write

∆l1 = F

2k ,

and in Dano’s case
∆l2 = 2F

3k .

Nevertheless, the problem statement specifies the exclusive utilization of the rest length l0 and
the elongation of the spring by Danka denoted as l1. For the latter

l1 = l0 + ∆l1 = l0 + 1
2
F

k
.

Subsequently, we want to know the total length of Dan’s spring, i.e., the value of

l2 = l0 + ∆l2 = l0 + 2
3
F

k
.

To get the answer in the required lengths, we express F/k from the relation for l1 and add it
to the relation for l2

l2 = l0 + 2
3 · 2 (l1 − l0) .

After a slight simplification, we get the answer that the total length of the springs throughout
Dano’s exercise is

l2 = 4
3 l1 − 1

3 l0 .

Finally, let us note that, just as the problem required, for expressing the result we do not need
to be acquainted with the absolute stiffness of either spring – it was sufficient to know that the
stiffness were the same.

Karel Kolář
karel@fykos.org
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Problem BE . . . aircraft tow tractors
The airport has tow tractors that can move large airplanes weighing up to M . The mass of a tow
tractor is m, and the friction between its wheels and the runway is f . What is the maximum
acceleration a tow tractor can have without slipping if it is pulling an airplane behind it?

Reportedly, at an airport in Brno, tractors are used to speed up planes.

Consider that the tow tractor can exert a total force F on itself and the aircraft. Then, according
to Newton’s second law, they will both move with an acceleration of

a = F

M +m
.

Now let’s see what this maximum horizontal force is. From the third Newton’s law, the force F
must arise in response to some other horizontal force acting between the tractor and the runway.
The only such force is the friction between the wheels of the tow tractor and the runway surface.
The maximum magnitude of the frictional force is given as Ft = fN , where N is the normal
force acting on the tractor perpendicular to the ground and f is the coefficient of friction. In this
case, the normal force corresponds to the gravitational force acting on the tractor, i.e. N = mg.
Overall, we obtain

Ft = fN = fmg = F ⇒ a = Ft

M +m
= mgf

M +m
.

If the tractor could spin its wheels with greater angular acceleration than what we found, it
would start to slide down the runway, and the frictional force would not increase, so it would
not change our result.

Jaroslav Herman
jardah@fykos.org

Problem BF . . . boredom on the subway
On the way home from school, Pepa got bored on the subway, so he pulled out a mathematical
pendulum from his pocket. It had a 1.002 m long rod with a 1.103 kg weight on its end, and
he hung it from the ceiling of the subway car. Now, considering the subway’s acceleration
of 2.350 m·s−2, how much larger is the period of the small oscillations of the mathematical
pendulum when the subway is in motion compared to its period when stationary?

Pepa was really bored on the subway.

The pendulum is subjected to gravitational acceleration g in the vertical direction and an
inertial acceleration a in the horizontal direction. The total acceleration will be the sum of their
vectors a′, which, due to their perpendicularity, can be calculated simply using the Pythagorean
theorem

a′ =
√
g2 + a2 .

The period of the small oscillations is determined from the well-known formula for the period
of a mathematical pendulum

T = 2π
√

l

g
.
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However, instead of g, we have to substitute the acceleration a′, and obtain the result

T = 2π

√
l√

g2 + a2
.

From there
T2 − T1

.= −0.028 s .

Petr Sacher
petr.sacher@fykos.org

Problem BG . . . Titanic
A metal boat with two passengers has a total weight of m = 210 kg. It is floating on the
pond surface and has the shape of a rectangular cuboid of dimensions 2.0 m × 0.8 m × 0.5 m
(the shortest dimension is vertical). Suddenly, a crocodile attacks the boat, and a crack of
cross-section A = 10 cm2 appears at the middle of the bottom of the vessel. Therefore, water
starts flowing inside. How much time remains for the passengers until every part of the boat
disappears below the surface? Jarda has seen a crocodile in Brno.

Solution through Bernoulli and Archimedes
The water is streaming inward at a velocity of v =

√
2g∆h, where ∆h = h2 −h1 represents the

difference in height between the pond surface and the water level inside the boat. The height
of the water in the boat is h1, and the bottom of the rowboat is h2 below the pond surface.

Using Archimedes’ principle, we determine the dependence of h2 on the water mass in the
boat. Gravity exerts a downward force, expressed mathematically as Fg = (m+ V ρ)g = (m+
+ Sh1ρ)g, where V represents the volume of water in the boat, ρ is the density of the water,
and S = 1.6 m2 is the area of the boat base. It is compensated by buoyancy of magnitude Fv =
= Sh2ρg.

Thus,
(m+ Sh1ρ) g = Sh2ρg ⇒ δh = h2 − h1 = m

Sρ
.

The speed of water flowing into the boat is constant. The boat disappears exactly when h2 =
= c = 0.5 m, i.e. when the water flows inside from the top. That happens when the water
surface in the boat is at a height

h1 = c− δh = c− m

Sρ
.

The volume of the water in the boat at that moment Sh1 = Avt is equal to the product of
constant volumetric flow rate and time. From that, we can express the time as

t = Sh1

Av
=

abc− m
ρ

A
√

2g m
abρ

= 367 s .
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Solution purely through the law of conservation of energy
How does the energy throughout the sinking process change? The potential energy of the boat
decreases and transforms mainly to the kinetic energy of the water flowing inside. As the water
enters the vessel, the potential energy will convert into heat; however, that shall not concern
us. Hence, we will rely on the equivalence between the change in the boat’s potential energy
and the water’s kinetic energy.

Let us denote the rate of the boat’s sinking vL. Then, in time dt the potential energy of
the vessel decreases by dEp = −mgvL dt. At the same time, due to this displacement, the boat
reaches a location previously occupied by water, corresponding to a volume of dV = SvL dt.
This water enters the boat through a hole A in time dt. Thus, it must have the velocity

v = dV
Adt = S

A
vL ,

which makes sense.
Therefore, the kinetic energy of the water increases in time dt by

dEk = 1
2 dV ρv2 = 1

2Aρv
3 dt .

We lay the differences of energies equal and express the rate of the water flowing inside the
boat v

dEk = − dEp

1
2Aρv

3 dt = mgv
A

S
dt

v =
√

2mg
ρS

,

which is the same as the solution through Bernoulli and Archimedes. We can also determine
the rate of the boat’s sinking vL = vA/S and subsequently calculate the time of the sinking of
the rowboat, just as in the previous solution, and we again get t = 367 s.

Jaroslav Herman
jardah@fykos.org

Šimon Pajger
legolas@fykos.org

Problem BH . . . pulleys with mass rope
Consider a pulley with a negligible radius, across which we suspend a rope of length L. A rect-
angular cuboid with a weight m1 hangs on one of its ends, while a rectangular cuboid with
a weight m2 on the other. What will be the acceleration of cuboid m1 when the system is
released? In the moment of release, the rope lays symmetrical to the pulley. The rope has
a uniform linear density and an overall mass of m. Neglect both friction and the weight of the
pulley. Lego eventually decided to submit something like this.
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The intuitive solution
As the rope is positioned symmetrically, its gravity will not contribute to any acceleration (the
components from both parts of the rope will cancel each other out). Therefore, our focus will
be solely on the inertial effect of its mass: when the entire system is set into motion, it will
experience an additional weight of m.

If the rope were massless, the acceleration would be

a = g
m1 −m2

m1 +m2
,

but since we need to accelerate a mass greater by m, then the acceleration must be

a = g
m1 −m2

m1 +m2 +m
.

Another intuitive perspective on this outcome is that we effectively added the mass m/2 to
both sides, given the symmetrical distribution of the rope. This addition cancels out in the
numerator and aggregates to m in the denominator. Thus, the result aligns logically with our
understanding. Task accomplished.

Proper solution
Each rope element is subject to three forces: a gravitational force of magnitude dmg, a tensile
force from the rest of the rope in one direction, and a tensile force from the rest of the rope in
the other direction (or a tensile force from two adjacent elements). Derived from Newton’s third
law, we deduce that elements within the rope experience forces of equal magnitude but opposite
directions from their neighboring elements. Consequently, introducing a variable “tension” T (x),
dependent on the position in the rope, becomes meaningful. This variable informs us about the
extent to which rope elements are being pulled at a specific point. Furthermore, if a rope element
has a length dx, employing a first-order approximation allows us to compute the resultant force
exerted by the remaining portion of the rope on that particular element:

dFT (x) = T (x+ dx) − T (x) = T (x) + dxdT (x)
dx − T (x) = dxdT (x)

dx .

The rope has a homogeneous length density, i.e., there is a linear relation dm = dxm/L
between the length of the element dx and the mass of the element dm.

For every element, the equation of motion must be satisfied, meaning that the total force
acting on it should be equal to the product of its mass and acceleration.

dma = ± dmg + dxdT (x)
dx

dxm
L
a± dxm

L
g = dxdT (x)

dx
m

L
(a± g) = dT (x)

dx ,

We have derived a differential equation for the tension T (x) as a function of the position in
the rope x, where x = 0 is the point of contact with weight m2, and x = L corresponds to the
weight m1. The entire rope experiences the same acceleration, whose direction gets reversed at
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the midpoint. However, from the rope’s perspective, it continues in the same direction (either
towards increasing or decreasing x), making a effectively a constant. Specifically, a positive a
implies acceleration in the direction of increasing x, corresponding to the scenario where m1
accelerates downward.

Regarding gravity, before it is ± in the equation because in the half where x < L/2, gravity
pulls in the direction of decreasing x, and in the other half (x > L/2), it pulls in the direc-
tion of increasing x. To express this more precisely, we can replace ± in the last equation
with sgn(L/2 − x) (and in the first equation, the opposite holds).

Let’s designate the force with which the rope pulls the weight m2 as T0, while T (0) = T0.
In the first half of the rope

m

L
(a+ g) = dT (x)

dx ,

so the tension in it will change as a linear function

T (x) = T0 + m

L
(a+ g)x ,

so at the point where the rope rotates, T (L/2) = T0 + (m/2)(a+ g) holds.
At the other half of the rope

m

L
(a− g) = dT (x)

dx ,

so we get the following for the tension

T (x) = T
(
L

2

)
+ m

L
(a− g)

(
x− L

2

)
= T0 + m

2 (a+ g) + m

L
(a− g)

(
x− L

2

)
.

Thus, at the point of contact with the block of the mass m1

T (L) = T0 + m

2 (a+ g) + m

2 (a− g) = T0 +ma ,

where T (L) is the force with which the rope pulls the cuboid m1 upwards.
We can write equations of motion for the blocks. We will continue to denote a as the

acceleration by which m1 accelerates downward and hence m2 accelerates upward. Thus, the
equation of motion for m2 will be

m2a = T0 −m2g .

We can express the unknown T0 from this equation as T0 = m2(a+ g). We write the equation
of motion for m1 and substitute

m1a = m1g − (T0 +ma) ,
m1a = m1g −m2(a+ g) −ma ,

(m1 +m2 +m)a = (m1 −m2)g .

a = g
m1 −m2

m1 +m2 +m
.

Šimon Pajger
legolas@fykos.org
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Problem CA . . . turbomolecular pump
Turbomolecular pumps, designed to achieve low pressures, operate by altering the momentum
of gas particles in the direction of the pumped volume. For this process to be effective, the
blades of the pump’s rotor must rotate at speeds comparable to the thermal speed of the gas
molecules. Let’s consider a rotor with a diameter of d = 15 cm and nitrogen as the pumped gas
with a temperature of 25 ◦C. At what frequency (not angular frequency) must the rotor in the
pump rotate to make the ends of the blades move at the root-mean-square speed of nitrogen
particles at the given temperature? The molar mass of nitrogen is MN2

= 28 g·mol−1.
Jarda was studying for an exam in vacuum physics.

The root-mean-square speed of nitrogen gas molecules is given by

v =

√
3kT
m

=
√

3RT
MN2

= 515 m·s−1

where m is the mass of one molecule of nitrogen, k the Boltzmann constant, R the molar gas
constant, T is the thermodynamic temperature and MN2

the molar mass of nitrogen given in
the problem statement.

We express the relationship between the velocity of the blades at the circumference and the
frequency of rotation

v = ωr = 2πf d2 = πdf ,

where ω = 2πf is the angular frequency of rotation and r = d/2 is the radius of the rotor.
Expressing the desired frequency,

f =
√

3RT
MN2

1
πd

.= 1 090 Hz .

This result aligns with frequencies commonly used in laboratories. Thanks to turbomolecular
pumps, it is possible to reach pressures as low as 1 · 10−9 Pa. However, these pumps require
pre-pumping with another type of pump. Due to their high rotational speeds, precise balanc-
ing is crucial. On the positive side, no oil lubricants are needed, which eliminates the risk of
contamination inside the vacuum apparatus.

Jaroslav Herman
jardah@fykos.org

Problem CB . . . sliding dryer

Mp

Mk Mk

Mz Mz

α αTerka made a DIY clothes dryer in her dorm room by positioning
two chairs with their backs turned toward each other and extend-
ing a piece of wool twine between them. The laundry hangs at
an angle of α = 13◦. However, the chairs began to shuffle to-
wards each other, so Terka loaded them with canned beans in
chili sauce. What is the minimum amount of canned food she
would need to keep the chairs in place? The weight of the chair is Mz = 4.8 kg, the weight of
the canned food Mk = 480 g and the coefficient of static friction between the chair and the floor
is f = 0.65. We can approximate laundry by a mass point of weight Mp = 2 kg suspended in
the middle of the clothesline. Terka observed Terka hanging the laundry.
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We will address the problem by analyzing the distribution of the gravitational force acting on
the laundry, denoted as FG. As the laundry is at rest, a tensile force must act from the direction
above the hinge and be in equilibrium with the gravitational force. From the distribution of
forces and knowing the angle of deflection, we can express this tensile force Ft as

sinα =
FG
2
Ft

Ft = FG

2 sinα .

We must be careful that the tensile force is applied to the laundry twice, each time from
one of the chairs, so we have to divide the pulling force in the calculation by two.

The same tensile force, just in the opposite direction, will act on the chair. We will be
interested in its horizontal (Fv) and vertical (Fs) components. These can be expressed again
from the distribution of the forces

Fv = Ft cosα = FG

2
cosα
sinα = FG

2 cotα ,

Fs = Ft sinα = FG

2 .

At the same time, the two chairs with the cans will exert a total gravitational force on the
ground

Fc = g (2Mz + xMk) ,

where x is the number of cans. In the following calculations, we will work with just half the
value as we are solving the whole situation for one-half of the system, i.e., one chair and half
of the cans.

The frictional force must be equivalent to the horizontal force acting on the chair to prevent
it from sliding. Therefore, we get the condition

f
(
Fc

2 + Fs

)
= Fv ,

fg (2Mz + xMk)
2 + fgMp

2 = gMp

2 cotα ,

taking advantage of the fact that FG = gMp. We can further multiply the equation by two,
reduce g, and use it to express the number of cans we are looking for

f (2Mz + xMk) + fMp = Mp cotα ,

xMk = Mp cotα
f

−Mp − 2Mz ,

x = Mp cotα−Mpf − 2Mzf

fMk
.

So after the substitution, we get the result x = 3.6, and the correct answer is that Terka
needs at least four cans.

Tereza Voltrová
tereza.voltrova@fykos.org
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Problem CC . . . a magical bath
Jindra has a bath in which the water level decreases at a constant rate of v0 independently
from its height h over the outlet hole. The outlet hole has a cross-section S0. You can assume
that the approximation gh ≫ v2

0 applies. Determine the cross-section of the bath as a function
of height S = S(h). Jindra played with boats.
Mathematically, Bernoulli’s principle determines the motion of fluids as

1
2ρv

2 + p+ ρgh = const,

where ρ is the density of the fluid, v is its velocity at a given point, p is the pressure at that
point due to the external environment, g = 9.81 m·s−2 is the gravitational acceleration and h is
the height of the point relative to the reference frame.

The water in Jindra’s bath is a fluid satisfying Bernoulli’s equation. All heights, denoted
as h, will be referenced to the outlet. At the water surface in the bath, where the water’s
velocity v0 remains constant (as per the information provided in the problem statement), the
height of the water above the outlet is h, and the pressure equals the atmospheric pressure p =
= pa. At the outlet hole, water exits with an unknown velocity v, the height above the outlet
hole is zero, and the pressure equals the atmospheric pressure p = pa. Thus, we get the equation

1
2ρv

2
0 + pa + ρgh = 1

2ρv
2 + pa ,

1
2v

2
0 + gh = 1

2v
2 .

Now, we introduce another equation into the scenario – the continuity equation. If at one
point water flows through a hole of cross-section S1 at a velocity v1 and at another point, it
flows through a hole of cross-section S2 at a velocity v2, then the volume flow rate q satisfies

q = S1v1 = S2v2 = const .

We get a set of two equations with two unknowns S and v from Bernoulli’s principle and
the continuity equation

Sv0 = S0v ,

1
2v

2
0 + gh = 1

2v
2 .

We want to express the dependence of the cross-section of the bath S on the height above the
outlet h. We express the velocity v from the second equation

v =
√
v2

0 + 2gh

and substitute it into the first equation

Sv0 = S0
√
v2

0 + 2gh .

The dependence of the cross section S(h) of the bath on the height h above the outlet opening
is

S(h) = S0

v0

√
v2

0 + 2gh = S0

√
1 + 2gh

v2
0

≈ S0

√
2gh
v2

0
.

Jindřich Jelínek
jjelinek@fykos.org
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Problem CD . . . clash of the titans
Traffic is so heavy on the highway that the vehicles maintain a time separation of τ = 3 s.
Nonetheless, one truck decides to overtake another truck that has a large gap in front of it.
It moves into the left lane and accelerates to vL = 95 km·h−1, while the overtaken truck is
still going vP = 90 km·h−1. The cars in the left lane are going va = 125 km·h−1, but when
they approach the vehicle in front of them at a distance of τvL, they immediately slow down
to a speed of vL. How many cars will have to slow down like this? The length of both trucks
is L = 15 m and the overtaking truck will merge into the original lane while maintaining the
same distance as before overtaking. Jarda heard about a long traffic jam on the highway.
When the truck moves into the left lane, its spacing behind the other truck is τvP. To overtake
the other truck, it needs to get the same distance ahead of him while traveling the length of
the overtaken truck and its own. Thus, in the left lane, he spends time

T = 2τvp + 2L
vL − vP

.= 130 s .

The gap between cars in the left lane is τva, which can now be shortened to τvL. Each car
can therefore continue at speed va until it gets within the distance vL of the truck in the
left lane and slows down immediately to vL. This maneuver takes each car the time t =
= τ (va − vL) / (va − vL) = τ . The number of cars that have to slow down is then

N = T

τ
= 2τvP + 2L

(vL − vP) τ
.= 43 .

In such a situation, a convoy of about 43 vehicles, which had to slow down to the speed vL,
would form behind the overtaking truck.

Jaroslav Herman
jardah@fykos.org

Problem CE . . . charged square
Marbles with charge q are placed in the vertices of a square, in the center of which is a marble
with charge Q = −kq. What must be the value of the constant k for the whole system to be in
equilibrium? Danka played with marbles.
From the symmetry of the problem, it is only necessary for the forces acting on the marbles to
be in equilibrium in the vertices of the square – the forces acting on the marble in the center
will always cancel out. Moreover, it is only necessary to consider the marble at one vertex –
the situation will be the same for all the others. The repulsive forces from the marbles in the
vertices will be compensated by the attractive force from the one in the center of the square.
So, the following holds√(

1
4πε

q2

a2

)2

+
(

1
4πε

q2

a2

)2

+ 1
4πε

q2

2a2 = 1
4πε

kq2

a2/2 ,

from where we can easily derive that

k =
(

1 + 2
√

2
4

)
.= 0.957 .

Vojtěch David
vojtech.david@fykos.org
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Problem CF . . . a folder with a clip

ϕ

F

d
n

l
Let us consider a paper folder equipped with a clip on its upper side to secure
papers. The clip, with a length of 2 cm, operates on a spring with a radial stiffness
of 1.0 Nm·rad−1. As papers are added between the folder and the clip, forming
a rectangular cuboid pinned down at the edge, coefficient of friction f exists
between the papers and the clip, as well as between the papers and the folder.
Infinite friction is assumed between the papers themselves. We found out that all
the papers fall out once we add 130 under the clip and turn the folder vertically.
What is the value of the coefficient f? Consider the width of a single sheet of
paper 0.1 mm and its weight 5.5 g.

Jarda carries a handy folder such as this one to school.

Let us designate the length of the clip as l, the radial stiffness of the spring as c,
the width of a single sheet of paper as d, its weight as m, and the number of
papers as n. The torsion applied to the clip by the spring can be determined as

M = cφ ,

where φ is the angle of rotation of the clip compared to the folder. We can calculate the size of
the angle from the number of papers as

sinφ = nd

l
.

Therefore, the force applied to the paper is equal to F = M/l and points perpendicularly
to the plane of the clip. We will decompose this force into the component perpendicular to
the plane of the folder and the one parallel to it. Once we turn the folder perpendicularly
to the ground, the parallel component points downwards, while the perpendicular component
points into the paper. The gravitational force of the paper bundle Fg = nmg, where g is the
gravitational acceleration, points downwards as well.

Against the forces pointed downwards, friction forces are applied between the clip and the
papers, and the papers and the folder. Because the papers are moving neither toward the folder
nor into the clip, the normal forces applying to them are in balance. The normal force from the
clip

N = F cosφ

is compensated by the reaction force of the folder of the same size. We will calculate the friction
force keeping the paper stationary as

Ft = 2fN = 2fF cosφ ,

where f is the coefficient of the friction from the problem statement and the numerical coeffi-
cient 2 comes from both of the normal forces being applied at the same time. This force must
be in balance with the forces

Fg + F sinφ = nmg + F sinφ = 2fF cosφ .

Substituting for F we get an equation

nmgl + cφ sinφ = 2fcφ cosφ ,
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from which, after substituting for the angle, we can express the friction coefficient as

f = nmgl + cφ sinφ
2cφ cosφ =

nmgl + c arcsin
(

nd
l

)
nd
l

2c arcsin
(

nd
l

)√
1 −

(
nd
l

)2
= 0.56 .

Jaroslav Herman
jardah@fykos.org

Problem CG . . . a falling suitcase

a

m

α

Above the seats in the train on a shelf tilted by an angle α =
= 10◦ is placed a wooden suitcase with the weight m = 10 kg.
With what minimal acceleration must the train move in order for
the luggage to slide from the shelf? The static friction coefficient
between the suitcase and the shelf is f = 0.4.

Train rides are unpredictable.

The key to solving this problem is to devise an accurate repre-
sentation of the forces acting upon the suitcase and distribute
them as forces perpendicular to the shelf (F⊥) and parallel to the shelf

(
F∥
)
. There will be

three forces acting upon the luggage: gravitational (FG = mg), friction force (FT = ma), and
inertia (FS) caused by the train accelerating. We can express the gravity and inertia components
as

FG⊥ = mg cosα ,
FG∥ = mg sinα ,
FS⊥ = ma sinα ,
FS∥ = ma cosα .

We can determine the friction force as a sum of forces perpendicular to the shelf multiplied by
the static friction coefficient, thus

FT = f (FG⊥ + FS⊥) = fmg cosα+ fma sinα .

For the suitcase to move forward, the result of forces must be equal to zero (more precisely, a
bit greater and oriented in the same direction as FS∥). As forces are vector quantities, we must
also take into account their directions

FS∥ = FT + FG∥

ma cosα = fmg cosα+ fma sinα+mg sinα

a = fmg cosα+mg sinα
m cosα− fm sinα

and after quantification
a
.= 6.1 m·s−2 .
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We observe that it is approximately two-thirds of the gravitational acceleration; hence, it is
improbable for the train to move with such an acceleration. An exception could be a traffic
accident or some other kind of crisis.

Tereza Voltrová
tereza.voltrova@fykos.org

Problem CH . . . dioptric
Hanka wears dioptric glasses with optical power −0.5 D to school. Once, however, she forgot
them at home so she needed to sit at a different spot than usual. What is the maximum distance
from the blackboard at which she can sit in order to see what is written on the blackboard
sharply? Hanka was playing quidditch with glasses.
Since Hanka wears glasses with negative dioptres, which are concave. It means that she cannot
see clearly at greater distances – she is nearsighted. Usually, a human without this disability
has the so-called far point (the furthest point which can be seen sharply) at infinity. For a
nearsighted human, the far point is closer and it is impossible to focus at further points.
Therefore, glasses with concave lenses are needed in order to create a virtual image somewhat
closer.

If the source of the image Hanka sees is at infinity, rays from it are parallel to the optical
axis. By definition, a concave lens projects the source into its focus, so it drags the image closer
from infinity. The virtual image of any point closer than infinity lies between the concave lens
and its image focal point. Therefore, if Hanka wears glasses with which she can see even points
at infinity sharply, then she will certainly see all closer points sharply too.

The distance of Hanka’s far point should be the same as the focal length of her glasses, so
that she could see even points at infinity sharply. If the distance of her far point was different,
she would need to wear different glasses. Now, we just need to remember the relation between
the optical power and focal length

f = 1
D

= 1
−0.5 D = −2 m ,

where the negative sign means that the far point is on the opposite side of the lens than the
eye, as we assumed. The far point at the distance 2 m is the furthest point which Hanka sees
sharply, so she has to sit at most 2 m from the blackboard.

Kateřina Rosická
kacka@fykos.org

Jaroslav Herman
jardah@fykos.org

Problem DA . . . combustion
During the combustion of gasoline, two molecules of C8H18 along with 25 O2 enter the reaction
to form carbon dioxide and water. Consider the fuel consumption of a car 6 l · (100 km)−1 and
the density of gasoline 755 kg·m−3. Under normal conditions, what volume of CO2 is produced
during the car’s journey from Brno to Prague along a 207 km long route?

One day, Jarda will buy a Hydrogen-powered car.
One liter of gasoline contains the following amount of substance of carbon

nC = 8 V ρ

MC8H18

.= 53 mol ,
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where V = 1 l, ρ is the density of gasoline and MC8H18

.= 114 g·mol−1 is its molar mass. Since
for every mole of carbon, one mole of carbon dioxide is produced, we then also know the amount
of substance of CO2.

Substituting into the equation of state of the ideal gas gives the volume V as

VCO2
= nCRTa

pa
= 8 V ρ

MC8H18

RTa

pa

.= 1.3 m3 ,

where R is the gas constant, Ta is the normal temperature and pa is the atmospheric pressure.
The car has a fuel consumption of 6 l · (100 km)−1, so in a trip of 207 km it burns

6 l
100 km · 207 km = 12.4 l

of gasoline. This corresponds to releasing 12.4 l · 1.3 m3·l−1 = 16 m3 into the air. However, the
gasoline we normally use in our vehicles is not the pure substance with the formula above, so
various filters and catalysts must be used in the exhaust system to ensure that as few hazardous
substances as possible are released into the air.

Jaroslav Herman
jardah@fykos.org

Problem DB . . . a pond on a mirror
Jindra owns a Newtonian telescope with a hollow spherical primary mirror. It has a radius of
curvature r = 2.40 m. Once Jindra left the telescope uncovered in a vertical position outside,
the telescope was rained on, and the primary mirror was filled with water with a refractive index
of n = 1.33. How many times did the focal length of the primary mirror decrease? Neglect the
thickness of the water layer compared to the focal length.

Jindra also found diving beetles in a telescope tube.
The definition of a focal point is a point on the optical axis where reflected or refracted rays
arriving parallel to the optical axis intersect. The focal length is then the distance of the focal
point from the top of the mirror (the point on the mirror’s surface lying on the optical axis). In
the paraxial approximation, we assume that the angles of all incoming and reflected light rays
with the optical axis are small α ≪ 1. Rays parallel to the optical axis hitting the mirror surface
at perpendicular distance h from the optical axis will be reflected at an angle of 2α ≈ 2h/r.
The paraxial approximation for a spherical mirror with a radius of curvature r gives the focal
length

f0 = h

2α = rα

2α = r

2 .

This relationship holds for a spherical mirror without water inside.
Rays parallel to the optical axis will pass unchanged through the water layer on the mirror.

They are then reflected from the surface of the mirror according to the law of reflection. Let
us denote the angle point of reflection – the center of curvature – the peak of the mirror as α.
The ray is then reflected at an angle of 2α with respect to the optical axis. However, it still has
to pass through the water-air interface. According to Snell’s law of refraction, it breaks at an
angle of β towards the optical axis

sin(β) = n sin(2α) ,
β ≈ 2nα .
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In the derivation, we used the approximation for small angles sin x ≈ x for |x| ≪ 1. The new
focal length is

f = h

β
= rα

β
= r

2n = f0

n
= f0

1.33 .

So, the focal length has decreased 1.33 times.

Jindřich Jelínek
jjelinek@fykos.org

Problem DC . . . wombat’s
The tiny wombat Cooper cannot produce enough heat to cover the heat loss to the burrow’s
surroundings, which is 30 watts. However, Cooper is smart and he covers the circular entrance
with a radius r = 0.2 m with a layer of large leaves that has a thickness of 0.98 cm and a thermal
conductivity coefficient of 0.039 W·m−1·K−1. This helps because heat does not escape from
the burrow except through the entrance. Thus, Cooper can maintain a constant temperature
of 20 ◦C in the burrow even though it is 0 ◦C outside. One night, a strong wind swept away all
the leaves from the enclosure, leaving Cooper feeling cold once again.

Cooper opted to invite a friend into his burrow to sustain a cozy temperature of 20 ◦C.
To achieve this, how many times heavier than Cooper must his friend be, considering our
assumption that the heat output of wombats is directly proportional to their mass?

Káťa was excited that the Prague Zoo would finally have wombats.

When the entrance to the burrow is covered with leaves, the heat loss through the layer of
leaves balances the wombat Cooper’s heat output. If we consider the heat flux through the leaf
layer to be homogeneous and steady, the relationship

PC

S
= λ

T1 − T2

d
,

where PC is the Cooper’s heat capacity, S = πr2 is the entrance area, λ is the thermal conduc-
tivity coefficient, d is the thickness of the leaf layer, and T1, T2 are the temperatures inside and
outside the burrow respectively. We express Cooper’s heat power and quantify

PC = λ(T1 − T2)πr2

d

.= 10 W .

The total heat loss of the burrow when the entrance is open is P = 30 W. Cooper’s friend must,
therefore, cover the heat output

Pk = P − PC = 20 W .

Given our assumption that a wombat’s heat output is directly proportional to its mass, Cooper
requires a burrow companion with twice his heat output. Thus, Cooper’s friend must possess
double his mass.

Daniela Dupkalová
daniela@fykos.org
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Problem DD . . . street light

r

h

r

3

One can imagine a street light as a hemisphere of radius r =
= 30 cm, in which the bulb hangs at a distance r/3 from the shell.
The hemisphere is elevated above the ground at a height H =
= 4 m from its center and is shielded from below by a glass lid
of thickness h = 1 cm. By how many centimeters is the radius of
the illuminated area reduced due to the hooded lamp, compared
to the radius of the area it would illuminate if it were not hooded? The refractive index of the
glass is 1.5, and you can neglect the scattering of light in the glass. Also, assume that the glass
lid protrudes sufficiently over the edges of the lamp.

David was thoroughly examining a street light on his way from a meeting.

To determine the size of the illuminated area, we are interested in the rays incident on the edge
of the glass lid. Let us begin by calculating the horizontal distance that such a ray travels. In
a lamp, it first travels a distance R1, 1 = r before it hits the glass lid. From simple geometry,
we determine the sine of the angle of incidence of that ray as

sinα1 = 3
√

13
13 .

After refraction, we get

sinα2 = n1

n2
sinα1 = 2

√
13

13 ,

from Snell’s law. The ray travels a vertical distance h in the glass, so we can easily determine
the horizontal distance as

R1, 2 = h · tanα2 .

It is essential to realize that the refracted ray will travel again at an angle α1 from the normal.
This time, it travels a vertical distance H − h, so similarly

R1, 3 = (H − h) · tanα1 .

The radius of the illuminated part is, therefore, in the hooded case

R1 = R1, 1 +R1, 2 +R1, 3 = 3 775
6 cm .

Non-hooded situation is simple – we can determine the radius of the illuminated area from the
similarity of the triangles as

R2

r
= H + 2/3r

2/3r ⇒ R2 = 3H + 2r
2 = 630 cm .

Hence, we get that the radius of the area illuminated by the lamp without the lid is greater by

R2 −R1 = 5
6 cm .= 0.833 cm .

Vojtěch David
vojtech.david@fykos.org
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Problem DE . . . honking trains
Danka is cycling along a straight train track at a speed vD. In the same direction as her, a train
goes down the railway at a speed v1 = 156 km·h−1, honking its horn at a frequency of f1 =
= 330 Hz. A second train comes from the opposite direction at a speed v2 = 65 km·h−1 which
is honking at f2 = 350 Hz. However, Danka hears both trains making the same tone. At what
speed is she traveling? Give the result in units of km·h−1. Danka went for a bike ride.

Danka perceives a tone with a frequency different from the actual frequency produced by the
train due to the train’s motion relative to her. This phenomenon is rooted in the Doppler effect,
where the crucial factor is the motion relative to the medium transporting the waves – in this
scenario, the air serves as the medium for sound propagation. Both the trains as sources of
sound and Danka as the receiver of sound are moving relative to the air, which, in our case, we
consider to be stationary. In the case of those trains, the frequency heard by Danka is higher
than that emitted by the trains because they are traveling towards Danka. In this case, for the
frequency f that Danka hears from the first train, the formula looks like

f = f1
c− vD

c− v1
,

where c = 343 m·s−1 is the speed of sound in air. In the fraction’s numerator, Danka’s speed is
subtracted from the speed of sound because Danka is moving in the direction away from the
train. Conversely, in the fraction’s denominator, the train’s speed is subtracted from the speed
of sound as the train is moving toward Danka. She hears the same frequency f from the other
train. In this case

f = f2
c+ vD

c− v2
,

where the sum in the fraction’s numerator represents Danka’s movement towards the other
train, and the difference in the denominator represents the train’s movement towards Danka.
Now, we need to make these two equations equal and express the speed of Danka’s motion

f1
c− vD

c− v1
= f2

c+ vD

c− v2
,

(c− vD)(c− v2)f1 = (c+ vD)(c− v1)f2 ,

c(c− v2)f1 − vD(c− v2)f1 = c(c− v1)f2 + vD(c− v1)f2 ,

c(c− v2)f1 − c(c− v1)f2 = vD(c− v2)f1 + vD(c− v1)f2 ,

vD = c
(c− v2)f1 − (c− v1)f2

(c− v2)f1 + (c− v1)f2
.

After plugging in the numerical values, we get

vD
.= 3.80 m·s−1 .= 13.7 km·h−1 .

Danka is cycling at the speed 13.7 km·h−1.

Daniela Dupkalová
daniela@fykos.org
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Problem DF . . . insomniac civlization
Imagine that an alien civilization has evolved on Venus and is floating on dense clouds of sulfuric
acid at h = 75 km above the surface. In order to survive, they need a constant supply of sunlight.
The inhabitants must therefore live a nomadic life, always sailing towards the sunlight. What is
the minimum average speed they must travel, if they live at 60 degrees latitude? The radius of
Venus is 0.95 of the radius of the Earth, one rotation around its axis takes Venus 243 days, the
orbit around the Sun takes 224 days, and its axis of rotation is approximately perpendicular to
the orbital plane. Consider the circular orbit of Venus around the Sun and remember that Venus
rotates in the opposite direction to its orbit around the Sun. Matěj is scared of darkness.

First, we calculate how long a day lasts when viewed from Venus, that is, how long it takes
from noon to the following noon. This day is called a synodic day and we will denote it as T ′.
Since Venus rotates in the opposite direction than it orbits around the Sun, the synodic day is
shorter than the rotation time around its axis T . Specifically, after one orbit of Venus around
the Sun – after one period P – Venus rotates around axis N = P/T times. However, in that
time, N + 1 = P/T ′ synodic days will pass, because one day is “hidden” in Venus’ own orbit
around the Sun. Combining these two equations, we get

P

T
= P

T ′ − 1 .

From this we express the length of the synodic day

T ′ = PT

P + T

.= 117 d .

An alien civilization must sail around the planet in time T ′. In order to to get their velocity v,
we need to calculate the distance s which they will “swimm” through. The circumference of a
parallel line is scaled with the cosine of the latitude φ. Moreover, we must not forget that the
aliens are at the height h = 75 km above the surface. This is at a distance 0.95RZ + h from the
center of Venus, where RZ = 6 378 km is the radius of the Earth. Thus

v = s

T ′ = 2π(0.95RZ + h) cos
φ

P + T

PT

.= 1.9 m·s−1 .= 6.9 km·h−1 ,

which is equivalent to brisk walking.

Radovan Lascsák
radovan.lascsak@fykos.org

Problem DG . . . fast muons
How many times farther, on average, will a muon flying at v2 = 0.99c travel compared to
a muon flying at v1 = 0.95c? The mean lifetime of a muon is τ = 2.2 · 10−6 s.

Danka recalled a lecture from special relativity.

Let us denote by t1 the time of flight of the muon at velocity v1 and by t2 the time of flight
at velocity v2. Then, for the path the muon travels in each case, x1 = v1t1 and x2 = v2t2,
respectively. The time of flight of a muon is given, among other things, by its mean lifetime.
The crucial aspect is that the muon, as an unstable particle, only exists for a certain amount
of time and then decays. Since the muon is moving at relativistic velocity, an observer on the
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ground, due to time dilation, will measure a longer lifetime for the muon than the time that
the muon itself perceives. For time dilation, the relation is

t = τγ .

Here γ is the gamma factor, and it is equal to

γ =

√
1

1 − v2

c2

,

where v is the velocity of the muon relative to the observer on the ground, and c is the speed
of light. Then, the ratio of the distances of the two muons can be expressed as

x2

x1
= v2t2
v1t1

,

x2

x1
= v2τ

v1τ

√
1

1−
v2

2
c2√

1

1−
v2

1
c2

,

x2

x1
= v2

v1

√√√√1 − v2
1

c2

1 − v2
2

c2

.

After substituting the given values, we get
x2

x1

.= 2, 3 .

At a velocity of 0.99c, a muon travels 2.3 times farther than at a velocity of 0.95c.

Daniela Dupkalová
daniela@fykos.org

Problem DH . . . cart with a plumb and friction

α

M

m f

Consider a hill with a slope α = 30◦. At the top, we put a hollow
block of mass M = 10 kg with a string of length l = 15 cm hanging
from the upper face and a point mass m = 2.5 kg at the end of the
string (this mass is not included in the the mass of the block). We
release the block down the slope. At which angle (with respect to
the vertical direction) does the string settle? The result should be
positive if the string is tilted in the direction of travel, and negative
if it is tilted in the opposite direction. The coefficient of friction
between the block and the hill is f = 0.10. Lego loves to iterate his problems.

We are interested in the steady state situation. In such a situation, the string and the point
mass do not move relative to the block, as if they formed one perfectly rigid body together with
the block. We can calculate the acceleration of this body down the hill.
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Its total mass is M+m; the component of the gravitational force in the direction parallel to
the hill is (M+m)g sinα. The component in the direction perpendicular to the hill (i.e. normal
force) is (M + m)g cosα and the force of friction (acting parallel to the hill and against the
direction of motion) is thus f(M + m)g cosα. In total, the block is being accelerated by the
force

F = Fp − Ft = (M +m)g sinα− f(M +m)g cosα,

and its acceleration is therefore

a = F

M +m
= g(sinα− f cosα) .

More precisely, this is true as long as the friction is small enough to make the block actually
slide down the hill. Otherwise, the acceleration would simply be 0. However, we can verify by
substituting the values from the problem that the block indeed slides, since we get a = 4 m·s−2

Let’s now move to the frame of reference accelerating along with the block. In order to
make it so the point mass hanging from the rope in this system does not move, it must be
subjected to a zero effective (total) force. Let’s discuss the forces acting on it. Gravity mg acts
vertically downwards; the inertial force ma acts parallel to the hill towards the rear of the block;
and finally there is the force exerted by the rope on which the point mass hangs. The magnitude
and direction of the force from the rope must be (in the steady state situation) exactly such
that this force compensates for the resultant of the two remaining forces. It is important that
the direction of the force from the rope is the same as the direction of the rope. Thus, we must
find the direction of the resultant of the remaining two forces.

The force of gravity mg acts downwards. The vertical component of the inertial force has
magnitude ma sinα = mg(sinα− f cosα) sinα and it is directed upwards; the horizontal com-
ponent has size ma cosα and is directed backwards. The resultant of the forces of gravity and
inertia thus has a vertical component of magnitude

Fvert = mg
(
1 − sin2 α+ f cosα sinα

)
= mg(cosα+ f sinα) cosα

directed downwards and a horizontal component with magnitude

Fhoriz = mg(sinα− f cosα) cosα

directed backwards. Note that for the limiting case of a vertical hill (α = π/2), the point mass
in the reference frame of the block is not affected by any forces. This is due to the fact that
this system is falling with acceleration g, and the point of mass is in a weightless state from
the point of view in this reference frame.

However, let us return to the tilting angle of the rope. We are interested in the tilt with
respect to the vertical direction, so we get this angle as the arctangent of the ratio of the
horizontal component of the force to the vertical component

β = arctan Fhoriz

Fvert
= arctan sinα− f cosα

cosα+ f sinα .

The string is tilted by the angle β towards the back, so the answer should be −24◦.

Šimon Pajger
legolas@fykos.org
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Problem EA . . . mass points races

L

Lego is preparing for a competition of theoretical physicists, in
which they compete against each other in a race of mass points.
The mass points circle the track as follows. First, they travel
along a straight line of length L, then they turn arbitrarily
by 180◦, and again travel along a straight line of length L, fol-
lowed by another turn by 180◦, and so on. Lego created his mass
point such that it can reach the highest acceleration a, and its velocity relative to the track
always has the same magnitude. Advise Lego on how to choose the magnitude of this velocity
so that his mass point circles the track in the shortest possible time.

Lego is too clumsy to race with anything real.

The track consists of two identical straightaways and two identical curves, so we just need to
keep track of the sum of the times the mass point takes to travel one straightaway of length L
and one curve. For the velocity magnitude v, Lego’s mass point traverses the straightaway in
time t1 = L/v.

Furthermore, for this velocity magnitude v, it will have to follow a circular path of radius
for which applies

a = v2

R
⇒ R = v2

a
.

The semicircular curve will have a length of o/2 = πR, therefore Lego’s mass point will traverse
it in time

t2 = o/2
v

= πR
v

= πv
a
.

We search to minimize the time

T = t1 + t2 = L

v
+ πv

a
,

where the parameter over which we wish to minimize is v. That is, we differentiate T with
respect to v, and we set the derivative equal to 0:

0 = dT
dv = − L

v2 + π
a
,√

La

π
= v ,

and hence, we obtained the optimal speed.

Šimon Pajger
legolas@fykos.org

Problem EB . . . a pasta problem
Adam noticed an interesting phenomenon at the dorms. The maximum possible water flow
rate from a tap depends on its temperature. We know that the possible range of temperatures
is ⟨t1, t2⟩, water with temperature t1 = 20 ◦C flows out with flow rate Q1 = 55 ml·s−1, water
with temperature t2 = 35 ◦C flows out with a flow rate of Q2 = 400 ml·s−1 and the relation
between flow rate and temperature is linear. Adam needed to pour hot water from a pot of
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pasta into the sink under the tap, so he started pouring hot water at a temperature of T = 80 ◦C
with a flow rate of Q = 35 ml·s−1. Calculate the temperature of the water that has to come
out of the tap to allow the temperature of the water flowing out of the sink to be as low as
possible. Consider that the drain of the sink is large enough that all the water flows out of
the sink quickly without pooling up, all the water in the sink mixes quickly to an equilibrium
temperature, and neglect heat loss to the surroundings. Assume that the density of water is
constant. Adam doesn’t want to torment the pipes.

Let’s start by writing the calorimetric equation for a simpler situation – we have two constant
amounts of water at two initial temperatures in the sink.

m · c · (tv − t) = M · c · (T − tv) ,

where c represents the specific heat capacity of water, m represents the mass of water that
we let out of the tap, t its temperature, M the mass of water that Adam pours into the sink,
and tv is the resulting temperature which we are trying to minimize. This notation is indeed
not very correct in our situation, because instead of masses, we have flow rates – but note that
if we divide both sides of the equation by the specific heat capacity, then we divide both sides
by the density of water and then once again by time, we get a notation that we can already
apply to our situation. Specifically,

q · (tv − t) = Q · (T − tv) ⇒ tv = QT + qt

Q+ q
. (3)

Now to determine how the flow rate of the water flowing out of the tap depends on its temper-
ature. From the problem statement, we know that the dependence is linear, so we look for a
dependence in the form

q = a · t+ b .

By substituting the values in the problem and solving the system of equations, we easily get

q = (23 ml·s−1·K−1) · t− (405 ml·s−1) .

This relationship is plugged into the equation (3). For simplicity, we shall consider everything
to be dimensionless.

[tv] = 23[t]2 − 405[t] + 2800
23[t] − 370 .

We now differentiate this expression by the dimensionless temperature [t] and we set this deriva-
tive to be equal to zero. After simplifying, we get

529[t]2 − 17020[t] + 85450
(23[t] − 370)2 = 0 .

It is enough if the numerator of the fraction is equal to zero. Solving this quadratic equation,
we get only one solution satisfying the problem, namely that the minimum we are looking for
lays at [t] .= 25.95, so the answer to the original question is roughly 26 ◦C.

Vojtěch David
vojtech.david@fykos.org
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Problem EC . . . Another bead on a string
Consider a bead of mass m strung on a perfectly rigid circular wire of radius r, which is fixed
in space. We take a spring of stiffness k with zero proper length, attach one of its endpoints to
a fixed point at a distance r/2 from the center of the circle and the other endpoint to the bead.
What is the period of the small oscillations of the bead around its equilibrium position?

Lego has noticed that he has not made enough problems about oscillations this year.

The equilibrium position of the bead is, of course, when it is closest to the point where the
other end of the spring is attached, since the length of the spring in that position is l0 = r/2.
The question is what changes when the bead moves by a distance ∆o along the circle. We
can find this more easily by introducing a coordinate system with the origin at the center
of the circle along which the bead can move. Let’s choose the rotation of its axes so that in
the equilibrium position, the bead has coordinates [r, 0] (and then the fixed endpoint of the
spring has coordinates [r/2, 0]).

Solution via energy
When the bead moves by ∆o along the circumference of the circle, it moves by an angle φ =
= ∆o/r with respect to its center, where φ ≪ 1. Then we can simply write the new coordinates
of the bead as [r cosφ, r sinφ]. The length of the spring in this position is obtained by calcu-
lating the distance of this point from the fixed endpoint of the spring, which we can do using
Pythagoras’ theorem. The difference of the x-coordinates is r(cosφ − 1/2) and the difference
of the y-coordinates is r sinφ. Then the length of the spring is

l =

√
r2
(

cosφ− 1
2

)2
+ r2 sin2 φ = r

√
cos2 φ− cosφ+ 1

4 + sin2 φ = r

√
1 − cosφ+ 1

4 ,

while for small angles φ, the approximation cosφ ≈ 1 − φ2/2 holds. We should further note
that we are not so much interested in the length of the spring itself as the change in its energy
with respect to the equilibrium position. Since the energy of the spring is kl2/2, the increase in
energy from the equilibrium position is k(l2 − l20)/2, and we approximate

l2 − l20 ≈ r2
(
φ2

2 + 1
4

)
− r2

4 = r2

2 φ
2 .

We substitute φ = ∆o/r and express the change of the spring’s energy

∆Ep = 1
2k(l2 − l20) = 1

2
k

2 ∆o2 .

We are interested in the stiffness the bead feels when it oscillates. We can find it simply by
treating the change of the spring’s energy as keff∆o2/2, where keff is the stiffness of a spring
that would oscillate in the same way when attached to the bead with no additional constraints
on movement. Comparing the expressions, we get keff = k/2.

Solution via force
The second option is to calculate the force on the bead after displacement by ∆o. Only the
spring and wire are acting on the bead, while the force from the wire just cancels out the
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dϕ

dα

F

r

2

do

≈
r

2

Fig. 2: Depiction of the situation.

component of the force from the spring which is perpendicular to the wire (because the bead
cannot move in that direction). The resulting force on the bead is the component of the force
from the spring which is parallel to the direction of the wire at the bead’s current position.

For small oscillations, we can neglect the change in the spring’s length and thus assume
that the magnitude of the force exerted by the spring is F0 = kr/2. We just need to find the
projection of this force in the direction parallel to the wire. This projection is equal to ∆F =
= F0 sinα, where α is the angle between the direction in which the spring is pulling and the
direction perpendicular to the wire. The spring is pulling the bead directly towards the fixed
endpoint. Since the wire is circular, the direction perpendicular to the wire at any point is
always towards the center of the circle.

When we draw the situation, we see that the triangle (with vertices: center of the circle, fixed
attachment point of the spring, position of the bead) is, for a sufficiently small displacement, an
approximately isosceles triangle. The angles opposite to its legs are congruent, and therefore α ≈
≈ φ ≪ 1. It remains to take advantage of the approximation sinφ ≈ φ, substitute φ = ∆o/r,
and we find out that the force on the bead after it moves by ∆o from the equilibrium position
is

∆F = F0 sin ∆α ≈ k
r

2φ = k

2 ∆o .

The stiffness that the bead “feels” satisfies ∆F = keff∆o. By comparing the expressions for the
force, we get that the bead is being pulled back to the equilibrium position as if by a spring
with an effective stiffness keff = k/2.

It seems almost miraculous, but these two completely different approaches actually give the
same result.

Result
Whether using energies or forces, we have concluded that the bead oscillates as if it were
attached to a spring with a stiffness of keff = k/2. Finally, we note that as far as kinetic energy
or inertia is concerned, the curvature of the trajectory of the bead may be neglected. This means
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that we can use the known formula for the period of small oscillations, only substituting keff,
to obtain

T = 2π
√

m

keff
= 2π

√
2m
k
.

Šimon Pajger
legolas@fykos.org

Problem ED . . . let’s increase intensity
In many engineering applications, we need to obtain high intensities of electric field. We use
a wire with a diameter of 3.0 mm as one electrode, which we insert on the axis of a second, hollow
cylindrical electrode. Its radius is 1.2 cm. We apply a voltage U to the electrodes. We compare
this circuit with a plate capacitor where we apply the same voltage, and the distance between
the plates is 2.0 cm. Determine the ratio of the electrical intensity in the close surroundings of
the wire in the first circuit to the intensity in the plate capacitor in the second circuit.

Jarda wanted to observe St. Elmo’s fire.

Let us denote the radius of the large cylindrical electrode b = 1.2 cm, the radius of the small one
as a = 1.5 mm, and the distance between the plates of the capacitor d = 2.0 cm. The intensity
of electric field in a plate capacitor is simply

Ed = U

d
.

For a cylindrical capacitor the situation is more complicated. Because the narrower of the
electrodes is cylindrical, it creates a field around it that decreases in proportion to r−1, where
r is the distance from the axis of symmetry. There is a potential difference U between the
electrodes, which can be written in terms of

U =
∫ b

a

E(r) dr =
∫ b

a

c

r
dr = c ln

(
b

a

)
.

From here, we express the proportionality constant c and find the electric field around the
electrode, i.e.

Ea = c

a
= U

a ln
(

b
a

) .
The wanted ratio is thus

Ea

Ed
= d

a ln
(

b
a

) = 6.4 .

By changing the geometry, we can achieve higher field strengths in some places, even with
similar external dimensions.

Jaroslav Herman
jardah@fykos.org
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Problem EE . . . Fykosaurus
The Fykosaurus usually flies over the landscape with a velocity v0 = 80 km·h−1 in the horizontal
direction. At this velocity, the force of dynamic lift is the same as the force of gravity. However,
if the Fykosaurus wants to rest on a tree, he must land on it – to do so, he must fly with
a velocity of at most v1 = 20 km·h−1 in the horizontal direction. Suppose that he uniformly
decelerates to this velocity in this direction with a deceleration of a = 2 m·s−2. What would
his vertical velocity on landing be if he had zero vertical velocity before he started decelerating
and was not accelerating upward?
Note: Dynamic lift is proportional to the square of horizontal velocity.

David was afraid of dropping out of Matfyz.
First, we calculate how long it would take the Fykosaurus to reach the landing velocity v1.
Since the deceleration is constant, the

v1 = v0 − aT ⇒ T = v0 − v1

a
,

where v0 is the initial velocity, a is the deceleration in the horizontal direction, and T is the
sought time. Thanks to the condition for Fdyn, we obtain an equation that allows us to calculate
the constant of proportionality

Fdyn = k · v2
0 = mg

mg

v2
0
.

From Newton’s second law, the vertical acceleration aV is

aV = F

m
⇒ aV = mg − Fdyn

m
.

Since we are interested in vertical velocity, we only need to integrate this acceleration with
respect to time. If we denote the horizontal velocity of the Fykosaurus by vH, we can write

vlanding =
∫ T

0
aV dt =

∫ T

0

mg − Fdyn

m
dt =

=
∫ T

0

mg − mg

v2
0

· v2
H

m
dt =

= g

∫ T

0
1 − 1

v2
0

· v2
H dt

Finally, we substitute vH = v0 − at and the resulting integral is easily calculated as

vlanding = g

∫ T

0
1 − (v0 − at)2

v2
0

dt = g

∫ T

0

2at
v0

− a2t2

v2
0

dt =

= g
2a
v0

[
t2

2

]T

t=0

− g
a2

v2
0

[
t3

3

]T

0

= g
−aT 2

v0
− g

a2T 3

3v2
0

=

= g
a

v0

(v0 − v1)2

a2 − g
a2

3v2
0

(v0 − v1)3

a3 = g
3v0 (v0 − v1)2 − (v0 − v1)3

3v2
0a

=

= g
(v0 − v1)2(2v0 + v1)

3v2
0a

.
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After substitution, we get vlanding
.= 46 m·s−1. We see that the birds in general must also be

slowing down significantly in the vertical direction during landing.

David Škrob
david.skrob@fykos.org

Problem EF . . . imperfect diode
Consider a diode that has a resistance 2.2 Ω in the forward direction, while in the reverse
direction, its resistance is infinite. The imperfection of the diode lies in its non-zero parasitic
capacitance of 19 pF, which can be represented as a capacitor connected in parallel to the diode’s
resistance in an equivalent circuit. We connect such a diode to an AC voltage source with a
frequency of 3.5 GHz and a voltage amplitude of 12 V. Determine the ratio of the maximum
current in the forward direction to the maximum current in the reverse direction. You should
give a positive value. Jarda was driving in the wrong direction on a one-way street.
In parallel wiring of a capacitor and a resistor, we have the same voltage on both elements,
which in our case is equal to the voltage on the source U = U0 sin(ωt), where ω = 2πf is the
angular frequency of the source. Thus

U = RIR ,

U = Q

C
,

where R is the resistance of the resistor and IR is the current flowing through it. The charge
on the capacitor of capacitance C is Q. The current through the branch with capacitance
corresponds to

IC = dQ
dt = C

dU
dt = U0ωC cos(ωt) .

The total current through the diode is determined as the sum of the currents through the two
branches

I = U0

( 1
R

sin(ωt) + Cω cos(ωt)
)
.

The capacitive current remains the same for both directions, only with the opposite sign, while
the resistive current varies depending on the direction. Let the diode be connected in the forward
direction during the first half of the period T = 1/f . Then, the current satisfies

I0<t<T/2 = U0

( 1
R1

sin(ωt) + Cω cos(ωt)
)
,

with R1 = 2.2 Ω. However, after substituting R2 = ∞ in place of R1, we obtain
IT >t>T/2 = U0Cω cos(ωt) .

The maximum current in the forward direction is found by differentiating the expression I0<t<T/2
with respect to time and setting it equal to zero

dI0<t<T/2

dt = U0

( 1
R1

ω cos(ωt) − Cω2 sin(ωt)
)

= 0

⇒ 1
R1Cω

= tan(ωtm)

⇒ I0<t<T/2,max = U0

R1

√
R2

1C
2ω2 + 1 .
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The value of the maximum current in the reverse direction is IT >t>T/2,max = U0Cω. The ratio
we are looking for is then

I0<t<T/2,max

IT >t>T/2,max

=
√
R2

1C
2ω2 + 1

R1Cω
=
√

4π2R2
1C

2f2 + 1
2πR1Cf

= 1.48 .

Here we can observe that for C → 0, the ratio tends to infinity as we would expect. On
the other hand, for high frequencies or large capacitances, the ratio tends to one, i.e. the
asymmetric conductance is no longer observed. This must be taken into account when designing
high-frequency circuits.

Jaroslav Herman
jardah@fykos.org

Problem EG . . . pressed hatch
Consider a space with an opening of area A, which we close with a straight vertical cylindrical
hatch of the same inner and outer area A. We pump the air out of the space to a pressure
of 10 Pa and then shut down the pump. There are, however, leaks between the hatch and the
rest of the vacuum apparatus, so that air particles still enter from the surrounding atmosphere.
Consider that the rate of leakage is directly proportional to the pressure difference between the
compartments and inversely proportional to the force by which the hatch is pressed against the
apparatus. After seven hours since the air was pumped out, a pressure of 80 Pa was measured
inside. Determine how long after the apparatus has been pumped will the pressure exceed 200 Pa
if the temperature inside the apparatus is T = 20 ◦C all the time.

Jarda’s blood pressure is rising.

Let’s rewrite the assignment as an equation for the number of particles inside the hatch N

dN
dt = α

(pa − pin)
F

, (4)

where dN/ dt is the change of the number of particles inside the apparatus in time, α is some yet
unknown coefficient of proportionality, pa is the atmospheric pressure outside the apparatus,
pin is the pressure inside which changes with time, and F is the force applied to the hatch by
the rest of the apparatus.

Now let’s express several other relationships. The number of particles inside is obviously

N = NAn ,

where NA is Avogadro’s constant and n is the amount of substance of the gas inside. From the
ideal gas law, we can derive the relation between n, V , and the pressure pin as

pinV = nRT ,

where T is the thermodynamic temperature. We can see that the number of particles inside the
apparatus is directly proportional to the pressure pin, since all the other variables are constant
during the process

N = pinV

RT
NA ,
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The force acting on the hatch from the outside is Fout = Apa. According to the problem, the
area on the inside is the same as from the outside, so the force acting from the inside is Fin =
= Apin. Therefore, the total force acting on the hatch is F = A (pa − pin). We can see that
it is also proportional to the pressure difference between the interior and exterior. It’s worth
noting that, since the hatch is placed vertically, it is not pushed against the apparatus by its
gravitational force.

Let us substitute N and F into our differential equation (4). We get

dpin

dt = αRTA

V NA

(pa − pin)
(pa − pin) = β ,

where we denote the constant αRTA/(V NA) = β and truncate the dependence on the pressure
difference. The pressure in the apparatus increases linearly as

pin = pin0 + βt ,

where t is the time from reaching the pressure, pin0 = 10 Pa. We also know that after time t0 =
= 7 h the pressure increased to pin1 = 80 Pa. From here, we can calculate the constant β as

pin1 = pin0 + βt0 ⇒ pin1 − pin0

t0
= β .

We reach the pressure pin2 = 200 Pa at time τ , which we find as

pin2 = pin0 + βτ ⇒ τ = pin2 − pin0

β
= t0

pin2 − pin0

pin1 − pin0
= 19 h .

Pressure 200 Pa will be in the apparatus 19 h from the first depletion to 10 Pa.

Jaroslav Herman
jardah@fykos.org

Problem EH . . . asynchronous single-phase motor
One approach to construct an electric motor using a single-phase AC voltage source, involves
connecting two branches in parallel. In one of these branches, the phase can be shifted by in-
troducing a capacitor. We need the phase difference between the branches to be π/2 and the
electric current amplitude in each branch to be the same. Each branch contains two coils con-
nected in series with an inductance L and a resistance R. How do we need to choose the angular
frequency of the source ω and the capacitance of the capacitor C, which will be connected in
series with one branch, to achieve the desired outcome?

Lego had lecture about electric motors at the camp.

The condition for currents connected to one source to have the same amplitude is that both
branches also have the same amplitude. Furthermore, if we require that the currents are offset
by π/2, the angle between the vectors representing the impedances in the complex plane must
also be equal to π/2.

The impedance of the branch without a capacitor will be

Z1 = 2R+ i2ωL ,
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where i denotes the complex unit. The impedance of the branch with a capacitor will be

Z1 = 2R+ i
(

2ωL− 1
ωC

)
.

We can see that the real component of the impedance is the same, and the condition for the
impedance to be the same implies that the complex component must also be the same size. If the
impedances are to be offset relative to each other, they must be complex conjugates Z1 = Z̄2.
In other words, the complex components must be opposite

2ωL = −
(

2ωL− 1
ωC

)
,

4ωL = 1
ωC

.

If we also want the phase difference to be π/2, combined with Z1 = Z̄2, we get that the
angles between the two impedances and the real axis must be π/4. This means that the real
and complex components must be equal

2ωL = 2R → ω = R

L
.

Thus, we found the necessary angular frequency. It remains to substitute it into the previous
equation

4R
L
L = 1

R
L
C

C = L

4R2 .

Šimon Pajger
legolas@fykos.org

Problem FA . . . irresistibly attractive reloaded
Jindra finally found himself a girlfriend, and so he decided to sell his unneeded black hole
from problem 8 in Physics Brawl Online 2023 to someone else. However, he noticed that his
black hole is shrinking due to the Hawking’s radiation. Jindra’s black hole had initial mass
of 3.675 · 1012 kg. The relation for temperature of Hawking’s radiation is

T = ℏc3

8πGMk
,

where M is the mass of the black hole and ℏ, c, G, k are reduced Planck’s constant, the speed
of light in vacuum, gravitational constant, and Boltzmann constant. Furthermore, for the
Schwarzschild radius of the black hole holds Rs = 2GM/c2. Assume that the black hole radiates
only photons from the event horizon and does not gain any mass from its surroundings. In how
many years will Jindra’s black hole evaporate? Jindra says hello to Denča in Frenštát.

If we make the assumption that the black hole emits only photons from the event horizon, then
it radiates with the power

P = 4πR2
sσT

4 (5)
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according to the Stefan-Boltzmann law, where σ is the Stefan-Boltzmann constant, T is the
temperature of the black hole, and

Rs = 2GM
c2 (6)

is the Schwarzschild radius of the black hole depending on the mass M of the black hole. As
we know from the problem, the temperature of a black hole is also dependent on its mass

T = ℏc3

8πGMk
. (7)

The initial temperature of Jindra’s black hole was T0 = 3.34·1010 K, which is about three orders
of magnitude higher than the temperature within the Sun. The Stefan-Boltzmann constant may
be expressed using other fundamental constants

σ = π2k4

60c2ℏ3 . (8)

Now, we substitute the relations (6), (7), and (8) to the equation (5), and adjust

P = 4π4G2M2

c4
π2k4

60c2ℏ3
ℏ4c12

4096π4G4M4k4 = ℏc6

15360πG2M2 .

We have derived the formula for the luminosity of a black hole depending just on its mass M .
The luminostity derived under the assumptions of the problem (photons only, emission from
the event horizon) is called the Bekenstein-Hawking luminosity.

Since the black hole radiates energy, and no matter is falling into it from the surroundings,
according to the assumptions of the problem statement, it will lose mass. Eintein’s relation E =
= mc2 relates energy to mass. Thus, for the loss of mass of a black hole, we get the differential
equation

−c2 dM
dt = ℏc6

15360πG2M2 .

The initial mass of the black hole is M0 = 3.675 · 1012 kg and its final mass after evaporation is
zero. The initial time is t = 0 and the black hole evaporation time is T . Using these integration
bounds, we can solve the differential equation

−
∫ 0

M0

M2 dM = ℏc4

15360πG2

∫ T

0
dt

1
3M

3
0 = ℏc4

15360πG2 T

T = 5120πG2

ℏc4 M3
0 = 4.172 · 1021 s.

Jindra’s black hole will evaporate after 4.172 · 1021 s, which corresponds to 1.32 · 1014 years.

Jindřich Jelínek
jjelinek@fykos.org

45

mailto:jjelinek@fykos.org


Fyziklani 2024 18th year 16th of February 2024

Problem FB . . . Rydberg state
What principal quantum number must an electron in a hydrogen atom have to be one astro-
nomical unit away from the nucleus? Consider Bohr’s model of the atom.

Jarda felt detached from reality.

To solve the problem, we will use Bohr’s model of the hydrogen atom. Here, the electron is
attracted to the nucleus electrostatically by the Coulomb force

FC = 1
4πε0

e2

r2 ,

where ε0 is the vacuum permittivity, e is the charge of the electron and proton (elementary
charge), and r represents the electron’s distance from the nucleus of the atom.

This force is equal to the centripetal force

Fd = me
v2

r
,

which acts on an electron of mass me orbiting at velocity v. An important postulate in Bohr’s
model is the quantization of the angular momentum of the electron

L = mev r = nℏ ,

where n is the principal quantum number and ℏ the reduced Planck constant. Alternatively, this
condition can be expressed by determining the integer number of wavelengths for an electron
on a circular trajectory with a length of 2πr. Here, the wavelength is defined as λ = h/p, where
p represents the momentum.

Substituting from the quantization condition for the electron velocity into the equation of
forces, we get

1
4πε0

e2

r2 = me
1
r

(
nℏ
mer

)2
⇒ r = n2 4πε0ℏ2

mee2 = n2 · 5.297 · 10−11 m .

By substituting into the condition in the problem statement

1 AU = r = n2 · 5.297 · 10−11 m ⇒ n =

√
1 AU

5.297 · 10−11 m
.= 53 · 109 .

Regarding highly excited electrons in atoms, we speak of Rydberg states. Scientists have ob-
served electrons hundreds of nanometres away from the nuclei, which is extremely large by
microworld standards. For electrons that are far away, only a tiny amount of energy is neces-
sary for ionization. Our scenario involves distances spanning many orders of magnitude greater,
so we could not replicate such behavior under terrestrial conditions.

Jaroslav Herman
jardah@fykos.org
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Problem FC . . . resistance of a reaction
Consider a circuit with a DC voltage source with voltage U = 450 mV, which is connected to an
electrolyte using electrodes. For charge to flow through the circuit, a certain resistance must be
overcome as the charge passes from the electrolyte to an electrode and vice versa. Consider an
alternative circuit with a resistor Rp, which represents the transition between the electrolyte
and the electrodes, and a resistor with resistance Ro = 28 mΩ, which represents the ohmic losses
in the whole circuit, connected in series. However, the resistance Rp depends on the voltage u
across it as Rp = Rp0 exp(−u/α), where α = 100 mV and Rp0 = 7.0 Ω. Determine the current
that flows through the circuit. Jarda is still processing data from his bachelor’s thesis.

The current flowing through the circuit can be expressed as

I = U

Rp +Ro
,

but Rp is dependent on the current.
The voltage on the resistor Rp is

u = U − IRo .

By modifying the first equation and substituting for Rp, we get

U − IRo = IRp = IRp0 exp
(

−u

α

)
= IRp0 exp

(
−U − IRo

α

)
.

With further adjustments, we modify it to the form

u = (U − u) Rp0

Ro
exp
(

−u

α

)
,

from which we get
x

(ξ − x) = β exp(−x) ,

where we have established dimensionless variables x = u/α, the ratio β = Rp0/Ro = 250 and
the ratio ξ = U/α = 4.5. We did all this to solve an equation that has no analytical solution.

We apply the natural logarithm to both sides of the equation and get

x = ln
(
β (ξ − x)

x

)
= ln

(
250 (4.5 − x)

x

)
.

Let’s first try to guess an approximate solution. If we put x = 2 on the right hand side,
then x = 5.745 on the left hand side. We plug this value back into the right hand side, but get
a negative argument of the logarithm, which is definitely not correct. However, we can see that
we probably hit the value of x at least within an order of magnitude.

Let’s try putting x = 3 on the right hand side. We get x = 4.828, which leads to the same
problem as before. For x = 4 we get 3.442 from the right hand side function, so the correct
value should lie somewhere in between. By sequentially halving the interval and plugging in the
values 3.5, 3.75, 3.87, 3.81, we arrive at the value 3.813. Trying 3.811, we get x = 3.811 06, which
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is already a very good match. We have quickly found the numerical solution to the equation
and can express the current I as

I = U − u

Ro
= U − xα

Ro
= 2.46 A .

A current of 2.46 A flows through the circuit.

Jaroslav Herman
jardah@fykos.org

Problem FD . . . flag waving in the wind
Consider a flag as a rigid homogeneous rectangle with mass m, a horizontal side of the length a,
and a vertical side of the length b, which can freely rotate around one of its vertical sides.

Wind is blowing with the velocity v. Assume that the total interaction between the flag and
air is described by a single force with magnitude F = KSv2, where S is the area of projection
of the flag onto a plane perpendicular to the wind direction, and K is a constant. The force is
acting in the direction perpendicular to the flag uniformly along its whole surface.

Find the period of small oscillations of the flag.
Legolas wanted to make an approximation of a flag.

When the flag is tilted by a small angle φ ≪ 1 rad into the wind, the area of its projection
onto a plane perpendicular to this direction is S = ab sinφ ≈ abφ. The magnitude of the force
acting on it is F = Kv2abφ.

What is the torque exerted on the flag by this force? The problem statement says that the
force is acting uniformly along the whole surface of the flag, so the “center of mass” of this
force is in the middle of the flag. It also says that this force is perpendicular to the flag, so its
moment arm is a/2. We find out that the torque acting against the direction of displacement
(tilt), when the flag is tilted by an angle φ, is M = Fa/2 = Kv2a2bφ/2. Therefore, the torsion
constant (a kind of “angular stiffness”) is D = Kv2a2b/2.

The only other property we need to find is the moment of inertia of the flag. We can ignore
the direction in which it cannot turn, so our task is to find the moment of inertia of a rod with
mass m and length a, around an axis passing through its endpoint, which is I = ma2/3.

The remaining question is how to find the period of oscillations from these intermediate
values. Either we know / find (in physics tables) the formula for the period of a physical
pendulum, which is

T = 2π

√
I

D
,

where I is the moment of inertia of the pendulum with respect to the axis of rotation and D is
the torsion constant with respect to the same axis. For a typical physical pendulum, D = mga,
where m is the mass, g is the acceleration due to gravity, and finally a is the distance of the axis
of rotation from the center of mass. In our case, of course, D is something completely different,
since the force which causes the oscillations is not gravity, but drag force of wind. The meaning
of torsion constant as “angular stiffness” remains the same, however. The formula T = 2π

√
I/D

may also be guessed using dimensional analysis as an analogy to the formula for the period of
a linear harmonic oscillator T = 2π

√
m/k.
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If the motivation from the previous paragraph is sufficient for you, you may skip this para-
graph. Otherwise, the full derivation comes simply from the Newton’s second law for rotation

Iφ̈ = M ,

where M is the torque acting on the body. When we substitute that the torque which returns
the flag to its equilibrium position is M = −Dφ, with D as our torsion constant and φ as the
angular displacement of the flag from the equilibrium position, we obtain a differential equation
of the second order

Iφ̈ = −Dφ ,

for which the solution is (feel free to verify it by substituting back)

φ(t) = φ0 sin

(√
D

I
t+ ψ0

)
,

where ψ0 and φ0 are constants determined from initial conditions. The important part is that
the period of this motion is the (smallest) time which, when added to t, does not change the
phase (i.e. changes the phase by 2π), which gives the equation√

D

I
t+ ψ0 + 2π =

√
D

I
(t+ T ) + ψ0 ,

2π =

√
D

I
T ,

2π

√
I

D
= T .

Either way, we reached the formula T = 2π
√
I/D; expressed using given variables, it is

T = 2π

√
I

D
= 2π

√
ma2/3

Kv2a2b/2 = 2π
√

2m
3Kv2b

.

Šimon Pajger
legolas@fykos.org

Problem FE . . . washing a chopping board
Imagine you are washing a chopping board in the sink. You turn it at an angle α = 45 ◦

relative to the ground (the shorter edge touches the bottom of the sink) and let the water
fall on it. Assume that the water bounces in all directions in the plane of the chopping board
at v = 45 cm·s−1. What percentage of the top of this kitchen utensil is wetted by water if its
dimensions are h = 27 cm and d = 17 cm and the water drips on its center?

Jarda has a tendency to formulate a problem while engaged in any activity.

At each point on the chopping board, a gravitational acceleration component of magnitude g sinα
acts on the water down the board. So the situation is analogous to a safety parabola – we are
investigating all points where water may be after bouncing off the center of the chopping board.
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We introduce coordinates on the board by placing the center in the middle of the bottom edge,
with the x axis running horizontally and the y axis running perpendicular to it along the surface
of the chopping board.

Then, the area which the water reaches lies below the curve

y = h

2 + v2

2g sinα − x2g sinα
2v2 .

We must still investigate if the safety parabola ever crossed the bottom edge. We find these
points by putting y = 0 in the previous equation as

x = ±
√

hv2

g sinα + v4

g2 sin2 α
= 9.3 cm >

d

2 = 8.5 cm .

We found that the parabola does not cross the bottom edge of the chopping board anywhere.
That makes it easy to calculate the area using an integral with limits from −d/2 to d/2∫ d/2

−d/2

(
h

2 + v2

2g sinα − x2g sinα
2v2

)
dx = h

2 d+ v2

2g sinαd− d3g sinα
24v2 .

Since we are asking for a fraction, we need to determine the ratio of this area to the area of the
whole board, so we express the solution to the problem as

p = 1
2 + v2

2gh sinα − d2g sinα
24hv2 = 0.40 = 40 % .

Jaroslav Herman
jardah@fykos.org

Problem FF . . . Arda
The world from the book The Silmarillion is called Arda. Instead of a sphere, this world is
shaped like a disk with a radius much larger than its thickness. However, the gravitational
acceleration on the surface, in the center of the disk, is the same as on Earth. Find the area
density of Arda.

Jarda’s memory of a succesful camp with a box full of experimental equipment.
We use the analogy of Gauss’s law from electrostatics but with different constants. In elec-
trostatics, in the surroundings of a large plate with a surface charge density σ, the intensity
is E = σ/(2ε). The intensity E corresponds to the gravitational acceleration g and ε is analogous
to the gravitational constant.

From a comparison of Newton’s law of universal gravitation and Coulomb’s law, we find the
analogy ε = 1/(4πG). The area density of Arda is then given as

σ = g

2πG = 2.3 · 1010 kg·m−2 .

If we were to consider the density of the material of the world to be ρ = 5 000 kg·m−3, its
thickness would have to be d = σ/ρ = 4 700 km. However, for the approximation from the
problem statement to be valid, i.e. that the radius of the disk is much larger than its thickness,
this radius would have to be many times larger than, for example, the radius of our Earth.

Jaroslav Herman
jardah@fykos.org
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Problem FG . . . boring vacation
This year, Fykosaurus went on holiday at Christmas. Since he became bored of lying by the
sea all day at an exotic destination, he explored the local technical sights. In one museum he
found a mathematical pendulum that was swinging in a south to north direction at the time
of his arrival. When he left the building, eight and a half hours later, it was swinging in a west
to east direction. On what latitude did Fykosaurus spend his vacation?

Jarda continues with Foucault pendulum problems.

You certainly have heard of the Foucalt pendulum, which was used to demonstrate the rotation
of the Earth on its axis in the eighteenth century. To find the solution of the problem, we need
to determine the angular velocity at which the plane of the pendulum rotates. In advance,
we can disclose that it is ω1 = Ω sinλ, where Ω = 2π(24 h) is the angular velocity of Earth’s
rotation and λ is the latitude at which is Fykosaurus located.

Let’s introduce the Cartesian coordinate system in the museum. Let the z axis point per-
pendicular to the surface, the x axis point east, and the y axis point north. The rotation of the
plane of the pendulum oscillations is caused by the Coriolis force, which appears in rotating
reference frames. Our established frame is certainly one of such systems, which is why this force
appears here. It acts on objects that are moving radially in the direction of rotation, namely
tangentially. In addition to this force, the force of gravity and the force of the hinge also act
on the pendulum.

The angular velocity vector of the Earth’s rotation in a given reference frame has components

ω =

( 0
Ω cosλ
Ω sinλ

)
.

We expres the Coriolis force as
FC = 2mv × ω ,

where m is the mass of the pendulum and v is its velocity vector in our reference frame. If we
neglect motion in the z axis (mathematical pendulums have minimum vertical deviations), we
can write the force vector as

FC = 2m

(
ẋ
ẏ
0

)
×

( 0
Ω cosλ
Ω sinλ

)
= 2mΩ

(
ẏ sinλ

−ẋ sinλ
ẋ cosλ

)
,

where the dots indicate the velocity in the x and y axes. From now on, let us restrict ourselves
to motion in the x, y plane. There is also a gravitational force component. The mathematical
pendulum behaves analogously to a linear harmonic oscillator and its motion in the x, y plane
is determined by the force

Fx,y = −mω2
g

(
x
y
0

)
,

where ωg =
√
g/L is the angular frequency of oscillations and x and y are the deflections of

the pendulum from the equilibrium position in both perpendicular directions.
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The resultant of the two forces gives the equations of the motion of the pendulum. We write
them for the components x and y as

mẍ = −mω2
gx+ 2mΩ sin(λ) ẏ ,

mÿ = −mω2
gy − 2mΩ sin(λ) ẋ .

To solve this system, we try the following trick: we first truncate both equations, then multiply
the second one by the complex unit i and finally add them. We get

ẍ+ iÿ = −ω2
g (x+ iy) + 2Ω sin(λ) (ẏ − iẋ) .

From the last bracket we extract −i and thanks to the relation i2 = −1 we can express the
whole equation as

ü = −ω2
gu− 2iΩ sin(λ) u̇ ,

where u = x+ iy is our new complex variable that represents the position of the pendulum in

the Gaussian plane. We have done nothing more than write the vector
(
x
y

)
as a single complex

number, giving us only one equation out of two.
This equation is analogous to that of a damped harmonic oscillator, where the resistant

force is proportional to the speed of motion. The solution are damped oscillations, where the
cosine waveform is exponentially damped. So we try to write the solution of the equation as

u = u0 exp(iω1t) cos(ω2t) ,

where u0 is some (again complex) amplitude. By substituting into the differential equation, we
get

−u0ω
2
1 exp(iω1t) cos(ω2t) − iω1ω2u0 exp(iω1t) sin(ω2t) − iω1ω2u0 exp(iω1t) sin(ω2t) −

−u0ω
2
2 exp(iω1t) cos(ω2t) = −ω2

gu0 exp(iω1t) cos(ω2t) − 2iΩ sin(λ)u0iω1 exp(iω1t) cos(ω2t)
+2iΩω2 sin(λ)u0 exp(iω1t) sin(ω2t) .

After truncation by the factor u0 exp(iω1t) and some adjustments, we get

−ω2
1 cos(ω2t) − 2iω1ω2 sin(ω2t) − ω2

2 cos(ω2t) =

= −ω2
g cos(ω2t) + 2Ωω1 sin(λ) cos(ω2t) + 2iΩω2 sin(λ) sin(ω2t) .

This equation must be satisfied at all times t, thus the sines and cosines must be equal separately,
and so we can split it into two equations

−2iω1ω2 sin(ω2t) = 2iΩω2 sin(λ) sin(ω2t) ⇒ ω1 = −Ω sin(λ) ,

−ω2
1 cos(ω2t) − ω2

2 cos(ω2t) = −ω2
g cos(ω2t) + 2Ωω1 sin(λ) cos(ω2t) ⇒ ω2 =

√
ω2

g + ω2
1 .

Foucalt pendulums have a suspension length in the tens of meters, which corresponds to ωg

in the order of tithes of Hz. This is about 4 orders of magnitude more than Ω, so we can neglect
the ω2

1 term in the square root relative to ωg and substitute u into our expression.

u = u0 exp(−iΩ sin(λ) t) cos(ωgt) .
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Therefore, the pendulum swings with angular frequency ωg, but also makes a rotational motion
with angular frequency Ω sin(λ) (exponential with complex exponent). The minus sign in the
exponential even tells us in which direction the plane of oscillation will rotate.

According to the problem statement, in the time T = 8.5 h, the plane of oscillation has
rotated by 90 ◦, which corresponds to

Tω1 = T2π sinλ
24 h = 90 ◦ = π2 ⇒ λ = arcsin

(1
4

24 h
8.5 h

)
.= 45 ◦ .

Let us also note that no other solution (rotation by 270 ◦ or more) is possible.

Jaroslav Herman
jardah@fykos.org

Problem FH . . . separable couple

r m

Two identical cylindrical magnets of mass m = 7.5 g and ra-
dius R = 1.1 cm are positioned horizontally in a manner that
they repel each other while touching. Upon release, they move to
a distance x = 11 cm between their centers. What is the magnetic
moment µ of each magnet? The coefficient of friction between the
magnets and the substrate is f = 0.35. Consider the dipole-dipole interaction between the mag-
nets. Thanks to Jirka, Jarda became an expert on magnets.

What is the magnetic force between the magnets? We can use the knowledge from magneto-
statics, according to which the structure of the magnetic field of a dipole is indistinguishable
from the electrostatic field of an electric dipole. Thus, we can convert the force calculation into
an electrostatics calculation. Let’s consider substituting magnetic dipoles with electric dipoles.
For them, p = qδx, where q is the charge of the individual charges in the dipole, and δx is their
mutual distance. For example, since magnets repel each other, they must have both positive
charges at the top and both negative charges at the bottom. The electrostatic force by which
one magnet repels the other is

F = 2
4πε0

(
q2

r2 − rq2(
r2 + (δx)2) 3

2

)
,

where r is the distance between the centers of the magnets. Since we are considering dipoles,
δx ≪ r and we can develop a Taylor series of the second order

F = 2
4πε0

q2

r2

1 − 1(
1 +

(
δx
r

)2
) 3

2

 ≈ 2
4πε0

q2

r2

(
1 − 1 + 3

2

(
δx

r

)2
)

= 1
4πε0

3
r4 p

2 .

Now, we must move from the electrostatic force to the magnetic force. We replace the electric
dipole with a magnetic µ and replace the proportionality constant 1/4πε with µ0/4π. The
magnitude of the force is then

F = 3µ0

4π
µ2

r4 ,
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where r is the distance between the centers of the magnets. The potential energy of the system
at the origin is therefore

Ei = −
∫ 2R

∞
F dr = µ0

4π
µ2

(2R)3 .

The portion of this energy transforms into work executed by frictional forces. If we displace one
of the magnets from its initial position by x/2 −R, then this work is equal to

W = 2mgf
(
x

2 −R
)

= mgf(x− 2R) .

After the displacement, the mutual distance of the centers of the magnets is x, and their
potential energy is

Ef = −
∫ x

∞
F dr = µ0

4π
µ2

x3 .

Thus, from the law of conservation of energy, we get the relation

Ef +W = Ei ⇒ µ =

√
4πmgf(x− 2R)

µ0

x3 (2R)3

x3 − (2R)3 = 0.49 A·m2 .

According to the assignment we considered dipole-dipole interaction between magnets. In the
case of real magnets, with this approximation we can get because magnets are usually made
of magnetized material that has non-zero dimensions. At least in the case of homogeneous
magnetization, we can describe magnets in terms of a plane magnetic charge and then calculate
the force as in electrostatics for plane electric charges. For a bar magnet whose height is much
greater than its diameter, we then get that at large distances from the magnet the magnetic
field corresponds to that of a dipole, since we approximate the surface charge on the bases by
point charges.

Jaroslav Herman
jardah@fykos.org

Problem GA . . . Once again, there’s one left!
Jarda was bowling with his friends, but as usual, he was not doing well. Finally, it looked like
he was going to get a strike, but once again, there was one pin left standing. By this time Jarda
was getting really upset, so he put so much energy into his second throw that the ball was
moving at 0.7c. Surprisingly, he hit the bowling pin, there was an inelastic collision, and both
objects merged into one. What is their combined mass after stopping if the ball had a mass
of M = 7.0 kg before the throw and the bowling pin had mass m = 1.5 kg?

Jarda is scared of getting fat at the bowling alley.

Since the ball is moving at a very high velocity, we have to consider the special theory of
relativity. We still have the law of conservation of momentum, and although it is an inelastic
collision, the law of conservation of energy. We are going to assume that the energy of the
collision is converted into mass.
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However, we must allow for relativistic momenta and other adjustments. If the body has an
invariant mass (rest mass) of M and a velocity of v, its total energy (i.e. including the invariant
mass) is

E = Mc2√
1 −

(
v
c

)2
.

The relativistic momentum is
p = Mv√

1 −
(

v
c

)2
.

This is actually how we defined the energy and momentum before the collision, when M is
the mass of the sphere and v = 0.7c is its velocity.

Let’s denote by µ the invariant mass of the combination of the bowling pin and the ball
(whatever that looks like) after the collision and by u their combined velocity. Then the mo-
mentum after the collision is

p = µu√
1 −

(
u
c

)2

and the energy is

E = µc2√
1 −

(
u
c

)2
.

The momentum before the collision must be equal to the momentum after the collision. To
the kinetic energy of the sphere, we also add the rest energy of the bowling pin. We get a pair
of equations

Mv√
1 −

(
v
c

)2
= µu√

1 −
(

u
c

)2

and
Mc2√

1 −
(

v
c

)2
+mc2 = µc2√

1 −
(

u
c

)2
.

The right-hand side of the second equation is substituted into the first equation, and then
we can express u as

v

1 + m
M

√
1 −

(
v
c

)2
= u .

Substitute back into the previous equation and we have

µ = M

√√√√√
(

1 + m
M

√
1 − v2

c2

)2

− v2

c2

1 − v2

c2

= 8.98 kg .

It is clear that the rest mass after the collision is greater than the sum of the rest masses
before the collision.

Jaroslav Herman
jardah@fykos.org
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Problem GB . . . 21 zentimeter
Neutral hydrogen in interstellar space can emit a photon with wavelength λ = 21 cm, when it
transitions from a higher energetic state to a lower one. The half-life in a higher energetic state
is τ = 1.1 · 107 years. In the sky, we have identified a spherical source of this radiation, from
which flux density F = 1.5 ·10−24 W·m−2 is reaching us. The diameter of the source is d = 15 ly
and its distance from Earth is R = 21 000 ly. Determine the mass density of hydrogen in the
cloud (source of radiation). Jarda was listening to a German song.

The flux density F corresponds to
n = Fλ

hc

number of photons incident on one square meter per second. If we denote the distance of the
source from the Earth by R, then it emits

A = 4πR2n

photons per second, which is the activity of the whole source. From this, we calculate the
number of hydrogen nuclei in the cloud

N = Aτ = 4πR2nτ .

Here, we need to think more deeply. The number N gives the number of atoms that can
emit a photon, so they must be in a higher energetic state. The transition, with a wavelength
of 21 cm, transpires when the mutual orientations of spins of the electron and the proton in a
single atom undergo alteration. Applying Boltzmann’s distribution, it is essential to ascertain
the probability that an atom resides in a higher energetic state. Given the temperature on the
order of kelvins and the exceedingly small energy associated with the transition, all microstates
are essentially filled with equal probability (kBT ≫ hc/λ). That is because the hydrogen gas
hosting the transition would have at least the temperature of the cosmic microwave background,
T = 2.7 K (though more likely a higher temperature, as hydrogen clouds typically exist within
galaxies and are heated by radiation from stars). The temperature of our hydrogen transition
is Tλ = hc/(λkB) = 0.068 5 K.

We’re nearing completion. The total number of atoms should be approximately twice as large
as N . However, it is essential to note that Boltzmann’s distribution provides the probability of a
single microstate, not an entire energy level. According to the principles of quantum mechanics,
the spins of an electron and a proton can combine in four different ways. Out of these, three
have higher energy, and only one has lower energy. Consequently, according to Boltzmann’s
distribution, the state of an atom with higher energy occurs three times as often as a state with
lower energy. Hence, the total number of hydrogen atoms is 4/3N .

We multiply all the hydrogen nuclei in the cloud by the mass of each of them, mu. To find
the density, we divide the total mass by the volume of the spherical cloud, and we get

ρ = mu
4
3π
(

d
2

)3
4N
3 = 32muR

2Fλτ

hcd3 = 4.1 · 10−22 kg·m−3 .

On our timescale, we can regard the fraction of atoms in the higher energetic states as
constant. That is because new excited atoms are generated continually in a hydrogen cloud. It
happens due to random collisions between them, which may be rare, but on the other hand, the
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excited states of hydrogen have quite a long half-life. The thermal kinetic energy of hydrogen
atoms is orders of magnitude higher than the energy required for spin flipping, so there is
enough energy for continuous excitation.

Jaroslav Herman
jardah@fykos.org

Problem GC . . . Pew Pew
Tomáš and Viktor have elevated their airsoft matches to a new dimension: space. In this sce-
nario, what is the minimum distance from Viktor’s laser gun at which Tomáš must commence
his uniformly accelerated motion to ensure that a laser pulse fired directly at him cannot reach
him? We assume that Tomáš and his vehicle have a rest mass of m0 and are subjected to
acceleration by a constant force f . Tomáš initiates his movement simultaneously with the shot
from the laser gun, as observed from Viktor’s reference frame at rest.

Marek J. found out that it is possible to outrun light.

Despite the conventional understanding that the speed of light in a vacuum is the ultimate
attainable speed, an intriguing anomaly occurs in this scenario – Tomáš can evade light indef-
initely. We will defer an intuitive explanation of this phenomenon until later. For now, let us
focus on calculating this counter-intuitive fact.

We can view this problem as one-dimensional. In the case of relativistic mechanics, the
equation

f = dp
dt

still holds, but with one important change related to momentum: p = mv, where m is the so-
called “relativistic” mass/energy, m = γm0 with the Lorentz factor γ = 1/

√
1 − v2/c2. We see

that m changes with changing velocity v. Therefore, we need to solve the differential equation

d
dt

(
cm0v√
c2 − v2

)
= f ,

where only the velocity of Tomáš v depends on time. Straightforward integration and subse-
quently solving the quadratic equation for v gives

dx
dt = v = ft

m0

√
1 +

(
ft

m0c

)2
. (9)

Once again, we proceed with integration, this time addressing the integral of the right-hand side
in equation (9). We employ the substitution ft/m0c = sinhu to solve the integral. Consequently,
we derive the trajectory for Tomáš as

x = m0c
2

f

√
1 +

(
ft

m0c

)2
+ C ,

where we find the value of the integration constant C from the initial condition, which is that
at the time t = 0, Tomáš is at the distance d from Viktor. Then C = d−m0c

2/f .
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If the ray of light could reach Tomáš, an intersection of their trajectories or a time of
intersection would be calculable

ct = m0c
2

f

[√
1 +

(
ft

m0c

)2
− 1

]
+ d . (10)

We should check how this condition depends on d. The easiest way to start is probably trying d =
= m0c

2/f . Then, from the equation (10)

ft

m0c
=

√
1 +

(
ft

m0c

)2
,

which cannot happen for any time t (the right-hand side is always larger). Thus d = m0c
2/f is

a distance from which Viktor cannot ever hit Tomáš. However, we need to find the minimum
distance, so we consider d = m0c

2/f − ε, where ε > 0 is typically very small. Also, we should
realize that we only need to consider ε < m0c

2/f , since we would get d < 0 otherwise. After
substituting for d in the equation (10), we get an expression for time

t =
1 − f2

m2
0c4 ε

2

2f2

m2
0c3 ε

,

and considering just time with a positive sign, we get a solution if 0 < ε < m0c
2/f (the condition

of positive numerator). In simpler terms, for any reduction in distance from d = m0c
2/f , there

exists a corresponding time at which the laser ray reaches Tomáš. Thus, we have demonstrated
that d = m0c

2/f is the minimum distance we sought to determine. This conclusion aligns with
an alternative approach of considering the geometric properties of a hyperbola.

Finally, as promised, here is an intuitive explanation akin to Zeno’s paradox. Picture light,
much like Achilles striving to catch a turtle, reaching a point from which Tomáš has already
moved. However, the situation differs from Achilles and the turtle. Achilles and the turtle
move with uniform velocities, and the distance by which Achilles misses the turtle diminishes
sufficiently at every ”step” for Achilles to reach the turtle in a finite time. In the case of light
and Tomáš, this distance does not decrease rapidly enough because Tomáš, unlike light (and
the turtle), accelerates at every step. Consequently, light does not reach Tomáš in a finite time
but only at infinity.

Marek Jankola
marekj@fykos.org

Problem GD . . . inseparable couple

r m

vTwo identical cylindrical magnets of mass m = 7.5 g, radius r =
= 1.1 cm, and dipole moment µ = 1.1 A·m2 are placed on a per-
fectly smooth horizontal surface. They touch each other in a way
that induces attraction, causing them to remain stuck together.
The question at hand is to determine the maximum velocity v
relative to the base that can be imparted to one of the magnets perpendicular to the line con-
necting their centers, ensuring that the magnets remain firmly attached and do not separate.
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You can neglect friction but not the dipole-dipole interaction between the magnets.
Jarda did not want to leave his girlfriend.

First, let us shift to the reference frame of the magnets’ center of mass, where both magnets
are orbiting the point where they are touching at all times. There, the velocity of the center of
each magnet with respect to the center of mass is v/2.

In the problem labeled FH – “separable couple” – we showed that the attractive force
between the magnets is equal to

Fm = µ0

4π
3µ2

(2r)4 ,

where 2r is the distance between the centers of the magnets. To be precise, we have derived
that result for repulsive force, but it is straightforward to figure out that when the magnets
attract, the force has the same magnitude and opposite direction. In any case, this force has to
be greater than the centrifugal force, which value is

Fo = mω2r = m
(
v

2r

)2
r .

From the condition where both forces are equal in magnitude, we obtain

µ0

4π
3m2

(2r)4 = m
(
v

2r

)2
r ⇒ v =

√
3µ0

16π
µ2

mr3 = 3.0 m·s−1 .

Jaroslav Herman
jardah@fykos.org

Problem GE . . . self-propulsion

m2

m1

m

f

The figure depicts a trolley with two weights connected by a
rope and a system of pulleys. The masses of the cubical weights
are m1 = 1.5 kg, m2 = 1.0 kg and the mass of the trolley is m =
= 3.0 kg. The coefficient of friction between the cuboid with
mass m2 and the surface of the trolley is f = 0.40. The pul-
leys and the rope are massless and frictionless. What will the
acceleration of the trolley be once both weights and the trolley
are released to move freely? We assume that the system rapidly
reaches its steady state. The accompanying image depicts the
trolley and the two weights prior to their release.

Jarda tends to let Jindra write the solutions to his problems.

First, let’s try to guess the direction of the trolley’s movement. The cuboid with mass m2 starts
moving to the right since the rope pulls it with force T . This force is transferred to a pulley,
where it (due to the law of action and reaction) accelerates the trolley to the left. We will see
later that multiple forces are acting on the trolley, but we assume that the force T dominates.

Let’s denote the acceleration of the trolley by A. When the sign of A is positive, the trolley
accelerates to the left. The acceleration of the trolley causes inertial forces to act on the cuboids
in the trolley’s frame of reference. Thus, let us switch to the trolley’s frame of reference and
write down the equations of motion of the cuboids. The rope is transmitting a tension force

59

mailto:jardah@fykos.org


Fyziklani 2024 18th year 16th of February 2024

denoted as T . As the two cuboids are linked by the rope, they experience the same acceleration
denoted as a. The trolley’s acceleration to the left suggests that the inertial force is acting to
the right. Newton’s second law for the cuboid with mass m2 in the horizontal direction states
that:

m2a = T +m2A− fm2g , (11)
where g = 9.81 m·s−2 is the acceleration due to gravity.

Since the trolley is accelerating, the cuboid with mass m1 does not hang directly downward;
instead, it tilts at an angle α to the right of the vertical. The angle α satisfies

tanα = A

g
. (12)

The forces acting on the cuboid are the tension force T exerted by the rope, gravity m1g pulling
it downwards, and the inertial force m1A acting to the right. The cuboid m1, therefore, possesses
acceleration a in the direction of the rope, just like the cuboid m2. Newton’s second law in the
vertical direction says

m1a cosα = m1g − T cosα (13)
and in the horizontal direction, it is

m1a sinα = m1A− T sinα . (14)

First, let us check that the cuboids start moving despite friction when the trolley is released.
In that case, A = 0 and α = 0. We need to solve the system of two equations

m2a = T − fm2g ,

m1a = m1g − T ,

with two unknowns T and a. From the first equation, we express

T = m2a+ fm2g ,

substitute into the second equation and express the acceleration a

m1a = m1g −m2a − fm2g ,

a = m1 − fm2

m1 +m2
g .

The cuboids start moving only when the resulting acceleration a is positive. In our case, m1 =
= 1.5 kg > fm2 = 0.4 kg, so the system really starts moving.

We can return to the system of equations (11), (13), (14) describing the motion of the
cuboids in the reference frame of the accelerating trolley. They contain four unknowns T ,
α, a, A. The equation (12) is a linear combination of equations (13) and (14), providing no
additional information. Hence, a fourth equation is necessary, namely Newton’s second law for
the trolley. The reaction force from the rope T is pulling the trolley to the left. At the left pulley,
a force T sinα is pulling the trolley to the right. The friction force fm2g from the cuboid m2
pulls the trolley to the right. Tension forces from the rope segment between the pulleys cancel
each other out, thus not influencing the trolley’s acceleration. Additionally, there is the inertial
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force mA acting to the right in the reference frame of the trolley. Since the acceleration of the
trolley is zero, we derive the equation

0 = T − T sinα− fm2g −mA.

Now, we have a system of four equations

m1a cosα = m1g − T cosα ,
m1a sinα = m1A− T sinα ,

m2a = T +m2A− fm2g ,

0 = T − T sinα− fm2g −mA ,

with four unknowns T , α, a, A. From the equation (12), we can express the acceleration A =
= g tanα to get rid of one unknown

m1a cosα = m1g − T cosα ,
m2a = T +m2g tanα− fm2g ,

0 = T (1 − sinα) − fm2g −mg tanα .

If we find the angle α, we can express the acceleration A from (12). Therefore, we express

a = g

cosα − T

m1

from the first equation and plug it into the next two equations to get rid of another unknown
m2g

cosα − m2

m1
T = T +m2g tanα− fm2g ,

0 = T (1 − sinα) − fm2g −mg tanα .

Now, we express the tension force

T = m2g −m2g sinα+ fm2g cosα(
1 + m2

m1

)
cosα

,

from the first equation and substitute it into the second one, getting one equation with one
unknown α, which we need to solve numerically

0 = m2g(1 − sinα)1 − sinα+ f cosα(
1 + m2

m1

)
cosα

− fm2g −mg tanα .

We are going to solve it using an iterative method, where we put the unknown on the
left-hand side and get some function of the unknown at the right-hand side

α = f(α) .

We use the initial estimate of the solution α = α0, which we plug into the function and calculate
the second estimate of the solution α1 = f(α0). Every subsequent estimate of the solution αi+1
is calculated from the previous estimate as

αi+1 = f(αi) . (15)
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If we are lucky, the values αi may converge toward a singular value. At that point, it is within
our discretion to determine when we are content with the precision of the solution αi and decide
to conclude the iteration process. If the sequence (15) does not converge, we need to change up
the equation, express the unknown using another function α = f ′(α) and iterate again.

We are going to use the function

α = arctan

(
m2

m
(1 − sinα)1 − sinα+ f cosα(

1 + m2
m1

)
cosα

− f
m2

m

)
.

With the initial estimate α0 = 4.0 ◦, in a few steps, we converge to the solution α = 5.78 ◦.
With help of the equation (12), we then calculate the acceleration of the trolley A = g tanα =
= 0.993 m·s−2 .= 0.99 m·s−2.

Jindřich Jelínek
jjelinek@fykos.org

Problem GF . . . decaying problem
The radioactive nuclei of fykosium are obtained from a nuclear reaction that produces P nuclei
per second. If at time t = 0 we have NF nuclei of fykosium, what will be their activity at
time T , i.e., how many of them will decay per second? We know that the half-life of fykosium
is T1/2. Marek was going through a spontaneous personality decay.

The number of decaying nuclei is proportional to the total number of nuclei, with a proportion-
ality constant λ = ln 2/T1/2 (with the unit s−1). At the same time, the nuclei are being created
at the rate P . Hence, the following holds for the derivative of the number of nuclei N

dN
dt = −λN + P ,

where λ is the decay constant of fykosium.
Then

dN
dt + λN = P ,

eλt dN
dt + λeλtN = eλtP ,

d
dt
(
eλtN

)
= eλtP ,

eλtN =
∫

eλtP dt ,

N(t) = Ce−λt + P

λ
,

where C is an unknown integration constant, which we determine from the fact that N(0) = NF.
Consequently

C = NF − P

λ

and
N(t) = NFe−λt + P

λ

(
1 − e−λt

)
.
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The activity of a sample is the number of decays with respect to time. Let’s therefore calculate
how the number of nuclei changes over time

dN
dt = −λNFe−λt + P e−λt + (P − P ) = −λNFe−λt − P

(
1 − e−λt

)
+ P .

When we compare this result with the first equation, we see that the first two terms account
for the decay, while the last one determines the production of nuclei from the reaction and
does not contribute to the activity. Finally, we note that T1/2 = ln 2/λ and after adjusting the
exponentials we obtain

A(T ) = ln 2
T1/2

NF2
− T

T1/2 + P

(
1 − 2

− T
T1/2

)
.

Marek Milička
marek.milicka@fykos.org
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