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Problem AA . . . cold lemonade
The FYKOS bird wanted to cool down a bottle of the Bohemsca lemonade, so he dipped it into
a well. What volume would he have to drink beforehand in order to make the bottle float? The
total external volume of the lemonade bottle is 0.420l and the maximum volume of a liquid
that can fit inside it is 0.336 l. The original volume of lemonade in a filled bottle is written on
the bottle. The density of glass is 2.5 times greater than the density of water.

Jáchym became thirsty while digging a well.

Let’s denote the volumes described in the problem statement by Ve, Vi, Vl = 330 ml respectively,
and also denote k = ϱg/ϱw = 2.5. The bottle floats only if its mean density is equal to that of
water. The density of lemonade is almost the same as the density of water, so we only need to
consider the rest - the glass and air in the bottle. The volume of glass and air together is

V = Vg + Vi − (Vl − ∆V ) ,

where Vg is the volume of glass and ∆V is the volume of lemonade that the FYKOS bird must
have drunk. The mass of the air is insignificant, so the total mass of glass and air is m = mg =
= Vgϱg. The bottle floats if

ϱw = m

V
= Vgϱg

Vg + Vi − (Vl − ∆V ) .

Finally, after substituting for the volume of the glass Vg = Ve − Vi, we get the volume of
lemonade the FYKOS bird must drink as

∆V = k (Ve − Vi) + Vl − Ve = 120 ml .

Jáchym Bártík
tuaki@fykos.cz

Problem AB . . . ropey
A new rope with a length l0 = 60.0 m has a diameter d0 = 9.40 mm. After some use, its diameter
changes to d = 10.10 mm. Find out how much the rope shortens, assuming that its volume stays
constant. Dodo has a new rope.

For the volume of the rope, we can use the formula for a cylinder

V = πl0d2
0

4 = πld
2

4 ,

where l is the length of the used rope. Now we express this new length of the rope and calculate
the difference

∆l = l − l0 =
(

d0

d

)2
l0 − l0 = d2

0 − d2

d2 l0 .

After numerical evaluation, we get that the rope shrank by 8.0 m. That is unexpected.

Jozef Lipták
liptak.j@fykos.cz
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Problem AC . . . at the bottom

4α

2α

h

r

Dano has a dry well with constant circular cross-section and depth h.
When standing at the bottom, he is able to see an angle 2α ≤ 90◦ of
the sky above him. We want to increase this angle by pouring some
specific liquid into the well (Dano still stays at the bottom). Find the
condition for the index of refraction of the liquid if we want the angle
of the visible sky to be twice as large.

Jáchym didn’t know how it began. . .

The angle increases the most when we fill the well completely. A light
ray from Dano to the top of the well inclined at an angle α from the
vertical is bent by the interface in such a way that it forms the angle 2α
with the vertical, in order to see double the original angle of the sky.
If we denote the refractive index of the liquid by n, Snell’s law implies

sin 2α = n sin α .

Using the double angle formula sin 2α = 2 sin α cos α for the left hand side,

n = 2 cos α .

That’s the boundary condition, so we need n with greater or equal value,

n ≥ 2 cos α .

The answer is independent of the dimensions of the well.

Jáchym Bártík
tuaki@fykos.cz

Problem AD . . . snow on the roof
There is a h = 20 cm (in vertical direction) thick layer of snow on our roof. The slope of the
roof is α = 55◦, the density of the snow is ϱ = 0.80 kg·dm−3 and the dimensions of the roof
are 30 m × 6 m (when viewed in the direction perpendicular to it). Find the pressure exerted
on the roof by the snow. Dodo was taking a shower.

The total mass of the snow on the roof is

m = Shϱ cos α .

Pressure is defined as the perpendicular force Fn divided by the surface of the roof S

p = Fn

S
= mg cos α

S
= hϱg cos2 α

.= 520 Pa .

The snow presses on the roof with p = 520 Pa of pressure.

Jozef Lipták
liptak.j@fykos.cz
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Problem AE . . . Danka’s glasses
The maximum distance at which Danka can see sharply with a naked eye is 20 cm. What glasses
does Danka need to see properly (i.e. so her far point is located at the correct distance in front
of the eye)? Find the type and optical power of the lenses. Danka saw nothing.

Let’s use the thin lens equation
1
a

− 1
a′ = 1

f
.

Danka requires the glasses to project the far point (the point at an infinite distance a) to the
distance a′ = 20 cm in front of her eye, where she can see sharply. In our notation, the optical
power Φ = − 1

f
, so we get Φ = −5 D. Danka needs concave lenses with optical power −5 D.

Daniela Pittnerová
daniela@fykos.cz

Problem AF . . . interdimensional potential
Consider a planet with the same equatorial gravitational acceleration ag and centrifugal accel-
eration ao as the Earth (ag = 9.83 m·s−2 and ao = 0.034 m·s−2 respectively), but with a radius
of only R = 5.00 km. How big is the difference between the gravitational potential energy of
a small satellite on the surface of the planet and its potential energy infinitely far from the
planet? We are interested in the absolute value of this quantity per one kilogram of the satel-
lite’s mass. Karel was watching where Rick and Morty’s family escaped to.

The gravitational potential energy is defined to be zero at infinite distance from the source if
the source is a point mass (or a sphere, which has the same field). In both cases, therefore, the
energy at infinity is zero. At the finite distance R, we have the potential energy for our planet

Ep1 = −G
mM

R
.

The problem statement asks for the energy per mass of our satelite, which is the gravitational
potential

U1 = Ep1

m
= −GM

R
= −agR

.= −49 150 m2·s−2 ,

where we have used
ag = GM

R2

obtained from Newton’s law of gravity.
In comparison, for the Earth with radius RZ = 6 380 km, we get

U2 = −agRZ
.= 6.3 · 107 m2·s−2 .

We can see that for interstellar travel, a planet with a smaller radius is better. On the con-
trary, for the inhabitants, a bigger planet with smaller tidal forces is better. Anyway, considering
the density of this planet, which was computed at the Online Physics Brawl, it’s unlikely that
such a planet exists. Neutron stars have such density, but they usually have fast periods of
rotation and bigger surface gravity.

Karel Kolář
karel@fykos.cz
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Problem AG . . . caffeine
Daniel is watching his intake of caffeine. A standard cup of coffee contains approximately 80.0 mg
of caffeine. Daniel is preparing his coffee in his moka pot, in which case one cup with vol-
ume 1.00 dl contains three times more caffeine than a standard cup. FYKOS has ordered new
cups in the shape of equilateral cylinders – that means their height is the same as the diameter
of the base, which is 8 cm. How much caffeine (in mg) does Daniel receive by drinking a full
new cup of coffee prepared in the moka pot? Daniel is drinking too much coffee.

When 1 dl of coffee from Daniel’s moka pot contains three times more caffeine than a standard
cup, it contains 240 mg of caffeine. We can calculate the volume of new pot using the formula
for the volume of a cylinder

V = 1
4πd

3 .= 402 cm3 = 4.02 dl .

In the end, the amount of caffeine is proportional to the volume of coffee, so we get that there
are 965 mg of caffeine in a full new cup.

Daniela Pittnerová
daniela@fykos.cz

Problem AH . . . non-ideal voltmeter
Consider a resistor with resistance R. We connect a voltmeter in parallel with the resistor and
an ammeter in series with them. Then, we connect this circuit to a DC voltage source. The
ammeter shows a current I, the voltmeter a voltage U (where U ̸= RI). Calculate the inner
resistance of the voltmeter. Legolas was measuring resistances as physics lab practice.

The voltmeter is connected in parallel with the resistor. Therefore, U is the voltage on the
resistor. The current which flows through the resistor is

Ir = U

R
.

However, the ammeter is connected in series with the parallel combination of the resistor and
voltmeter, so the current flowing through it is the sum of currents flowing through each of
them, I = Ir + Iv.

Now, we only need to consider that the voltage shown on the voltmeter is the voltage on its
probes. From the ratio of these two quantities, we can calculate the resistance

Rv = Uv

Iv
= U

I − Ir
= U

I − U
R

= UR

IR − U
=
(

I

U
− 1

R

)−1
.

Šimon Pajger
legolas@fykos.cz
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Problem BA . . . pulleys again

M

m

What is the downward acceleration of the body with mass M? Neglect the
masses of all the pulleys and ropes.
We noticed that participants of Online Physics Brawl found pulleys difficult. . .

Let T be the tension in the rope on which the mass m is hanging. Then (since
pulleys are massless and thus the total force acting on them must be zero), the
second pulley from the left experiences an upward force 2T . This force has to
be compensated by the other rope, so the tension in it must also be 2T .

The equations of motion for the masses are

MaM = Mg − 4T ,

mam = mg − T ,

where both the accelerations point downwards.
Now we have two equations with three unknowns. We need to find a relation between the

accelerations. From the bare fact that the force exerted on the mass M by the rope is 4 times
larger, we can assume that it will accelerate 4 times slower.

We can easily prove it geometrically. Imagine that we displace the mass M downwards by x.
The second pulley must then move by 2x downwards, which moves m by 4x upwards. Thus
the acceleration of the mass m is 4 times the acceleration of M (in the opposite direction),
i.e. am = −4aM .

Plugging this into our equations, we get

MaM = Mg − 4T ,

−4maM = mg − T .

After solving the equations, we obtain the result

MaM + 16maM = Mg − 4mg ,

aM = g
M − 4m

M + 16m
.

For M > 4m, the body with mass M will accelerate downwards.

Šimon Pajger
legolas@fykos.cz

Problem BB . . . full tank, please
The water level in Matěj’s well began to drop, so Matěj started to fill it with a water stream
with constant mass flow q. Meanwhile, he noticed that just above the water level (which is h =
= 37 m deep), the cross-section of the stream is 13 times smaller. What is the velocity of the
water at the top of the well? Neglect surface tension. Jáchym likes uncommon wells.

Let us denote the lower cross-section by S. The upper cross-section is S0 = kS, where k = 13.
The velocities of water at the bottom and at the top are v and v0 respectively. The mass flow
rate must remain unchanged along the whole stream, therefore

vS = v0S0 .
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From this condition, we get v = kv0. We write the equations of motion

v = v0 + gt ,

h = v0t + 1
2gt2 ,

express time from the first formula as

t = v − v0

g
= (k − 1) v0

g

and substitute it into the second formula, so we get

h = v0
(k − 1) v0

g
+ 1

2g
(k − 1)2 v2

0

g2 .

The result is

v0 =
√

2gh

k2 − 1
.= 2.1 m·s−1 .

Jáchym Bártík
tuaki@fykos.cz

Problem BC . . . dropped
Štěpán dropped a very heavy cannonball into a well. After the time 3.69 s, he heard a loud
“splash”. How deep is the water level in the well? Neglect air resistance, but assume that the
speed of sound is finite. 10/10 made Jáchym happy.

Let h denote the depth of the water level. The duration of the cannonball’s fall is

t1 =
√

2h

g
.

The time necessary for the signal to propagate back to Štěpán is

t2 = h

c
,

where c is the speed of sound in the air. Obviously, t1 + t2 = t, and from this, we can express
the desired depth

0 = h2g − 2hc (tg + c) + t2c2g ,

h = c

g

(
(tg + c) ±

√
2tgc + c2

)
The correct root is the one with the − sign, which gives h

.= 60.4 m.

Jáchym Bártík
tuaki@fykos.cz
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Problem BD . . . phy-lley

M

A member of FYKOS with mass m = 50 kg is pulling a rope downward
with a constant force F = 300 N. Find the magnitude of his acceleration.
The mass of the depicted platform is M = 50 kg. Neglect the moments of
inertia of all pulleys. Matěj likes to dig holes.

We will assume a simpler situation where the member of FYKOS and the
platform form one rigid body. Later, we will explain why this assumption
is correct. Between this body and the ceiling, the rope is stretched four
times. A typical feature of a rope in a system of ideal pulleys is that the
force of tension in it is everywhere the same. The total force that acts on
the FYKOS member is 4F . Furthermore, the force of gravity acting on it
is Fg = (M + m) g. Let us use the standard formula for acceleration

a = 4F − Fg

M + m
= 4F

M + m
− g = 2.19 m·s−2 .

The FYKOS member and the surface were assumed to be one body because apart from the
surface, only the rope acts on the FYKOS member, upwards with the force F < mg. If he
wasn’t being lifted by the surface, he would start falling.

Matěj Mezera
m.mezera@fykos.cz

Problem BE . . . how to move the world
Lego wanted to move the world, so he jumped down from a tree. His centre of mass shifted
by h relative to the Earth. By how much did the Earth move, in the reference frame of the
centre of mass of the Lego-Earth system? Lego’s mass is m, the mass of Earth is M . Assume
that the radius of Earth RZ ≫ h. Do not assume anything about the masses of Lego and the
Earth. Lego wanted to move the world.

Since Rz ≫ h, the forces acting on both Lego and the Earth are constant during the whole
fall and both have the same magnitude F . Lego will then fall with the acceleration aL = F/m
towards the Earth and the Earth will fall with the acceleration aZ = F/M towards Lego. Their
relative acceleration is

av = aL + aZ = F
( 1

m
+ 1

M

)
= F

m + M

mM
.

We can easily calculate the duration of the fall

h = 1
2avt2 ,

t2 = 2 h

av
.

We plug this time into the kinematic equation for uniformly accelerated motion and get the
resulting displacement

s = 1
2aZt2 = 1

2
F

M
2 h

F m+M
mM

= h
m

m + M
.
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However, the displacement can be found even easier. It is sufficient to find the equation for the
relative distance x of the Earth from the centre of mass of the whole system as a function of
the distance d between Lego and the Earth. We find the distance from equality of torques

xM = (d − x) m ,

x = dm

M + m
.

During the fall, the distance d changed by h, thus the Earth moved relative to the common
centre of mass by ∆x = hm

M+m
.

Šimon Pajger
legolas@fykos.cz

Jozef Lipták
liptak.j@fykos.cz

Problem BF . . . a bubble in a sea
At the seabed in the depth h1 = 130 m under the sea level, a scuba diver releases an air bubble
with temperature t1 = 36 ◦C and radius r1 = 0.50 cm. The bubble moves upwards without
dividing into smaller bubbles or changing its shape. What is the radius of the bubble in the
depth h2 = 5 m under the sea level? Assume that there’s no heat exchange between the bubble
and the sea during the ascent of the bubble. The density of the seawater is ϱ = 1 020 kg·m−3,
the atmospheric pressure is pa = 1 013 hPa. Danka wants to go diving.

The bubble has a spherical shape, therefore its volume depends on its radius as V = 4
3πr

3.
Assuming no heat exchange, we are dealing with an adiabatic process; therefore, pV κ = const,
where κ = 1.4 is the adiabatic constant (ratio of heat capacities) for air. For volume V2, we get

V2 = V1

(
p1

p2

) 1
κ

.

Under the sea level, hydrostatic pressure p = hϱg affects the bubble, while the total pressure is
the sum of hydrostatic and atmospheric pressures. We get

4
3πr

3
2 =

(
p1

p2

) 1
κ 4

3πr
3
1 ,

from which we express

r2 = r1

(
h1ϱg + pa

h2ϱg + pa

) 1
3κ .= 0.85 cm .

The radius of the bubble in the depth 5 m under the sea level is 0.85 cm.

Daniela Pittnerová
daniela@fykos.cz
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Problem BG . . . doubly dioptric
We have a thin lens made of flint glass. We manufactured it to have optical power exactly φ =
= 1.000 D for the red light. Unfortunately, flint glass has a disadvantage of relatively high
dispersion. What optical power does the lens have for blue light? The refractive index of our
lens is nr = 1.628 for the red light and nb = 1.647 for the blue light.

Karel was wondering about chromatic aberration.

The optical power of a thin lens satisfies the formula

φ = (n − 1)
( 1

R1
− 1

R2

)
= (n − 1) k ,

where the constant k is the difference of multiplicative inverses of curvature radii R1 and R2,
which remains unchanged with dispersion. Consider the following equation

φr

nr − 1 = φb

nb − 1 .

From it, we can express the optical power for blue light

φb = nb − 1
nr − 1 φr = 1.030 .

This calculation would not be suitable for a thick lens due to influence of the refractive index
on the shift experienced by a light beam travelling across the lens.

Jáchym Bártík
tuaki@fykos.cz

Problem BH . . . a molecular rotator
A diatomic molecule of oxygen with a total mass m = 5.30 · 10−26 kg is rotating around its
centre of mass. The bond between the two atoms is elastic with a force constant k = 180 N·m−1

and length l = 1.21 A. What is the relative change in the length of the bond (the total change
in the length divided by the original length) if the molecule starts rotating with an angular
speed ω = 6.00 · 1012 rad·s−1? Assume that the atoms are point masses at the ends of the bond.

Danka remembered an exam from Physics 4.

While rotating, the elastic force Fp and centrifugal force Fc are in equilibrium. Then

Fp = k∆l ,

Fc = m

2 ω2 l + ∆l

2 .

Since these forces are equal, we find

∆l

l
=
( 4k

mω2 − 1
)−1 .= 2.66 · 10−3 .

The relative change in length is 2.66 · 10−3.

Daniela Pittnerová
daniela@fykos.cz
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Problem CA . . . danger in class
During Social Sciences lessons, Daniel noticed that most of the neon lamps in the classroom
are quite old. These lamps are l = 1.5 m long and firmly attached at the endpoints. Sometimes,
one of these attachments gets broken and the lamp can spin around the other end. What is the
velocity of the free end of the lamp at the lowest point of its trajectory if we assume that there
is no resistance? Daniel is wondering how dangerous school is.

To solve this problem, we will work with energy. Let’s assume that a lamp attached at both
ends has zero potential energy. During the fall, its centre of mass is moving down and this
potential energy is changing to kinetic rotational energy. We can write

−∆Ep = ∆Ek ,

mg
l

2 = 1
2Iω2 ,

where m is the mass of the lamp, I = 1
3 ml2 is the moment of inertia of a thin rod (which is an

approximation for a lamp) spinning around its endpoint and ω is the angular velocity of the
lamp at the lowest point. Now, we express the angular welocity as

ω =
√

3g

l
.

We can express the velocity of the free end as v = ωl =
√

3gl
.= 6.6 m·s−1.

We can also solve the problem using forces, by considering the force of gravity which acts
downwards in the centre of mass (in the middle of the rod). Then, we get the same result by
integration with respect to the angle between the force of gravity and the rod.

Daniela Pittnerová
daniela@fykos.cz

Problem CB . . . make a wish
Danka owns a well with a uniform circular cross-section. The well is magical and makes dreams
come true. Danka imagined sunny beaches of the South Pacific and threw a coin into the well.
The coin elastically bounced off the walls of the well a few times. The height difference between
the first and second points of impact with the wall of the well was d1 = 14.6 m. The height
difference between the second and third points of impact was d2 = 23.7 m. Even before the coin
bounced off the wall for the fourth time, Danka knew what the height difference between the
third and fourth points of impact was going to be. You should calculate it as well. Assume that
the coin is a point mass. Jáchym is looking forward to holidays.

The horizontal component vx of the velocity is constant. The horizontal distance which the
coin has to travel is always the same because the well is circular. All the impacts are elastic,
so the mechanical energy is conserved and the collisions obey the law of reflection. The time
between subsequent impacts is T . Let’s say that the first impact occurs at the time t = 0 and
depth h = 0 and the vertical component of the velocity is v = v0 at that moment. Then, the
formula for the depth of the i-th collision is

hi = v0ti + 1
2gt2

i ,
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where ti = iT . Let’s denote d3 = h4 − h3, where

hi =
i∑

j=1

dj .

We can express the vertical component of the velocity from the first equation

T v0 = d1 − 1
2gT 2 ,

and when we substitute it into the second equation, we are able to calculate the time T

gT 2 = d2 − d1 .

By substituting into the third equation, we find

d3 = 3v0T + 9
2gT 2 − d1 − d2 = 2d2 − d1 = 32.8 m .

Jáchym Bártík
tuaki@fykos.cz

Problem CC . . . a paintbrush is falling
Find the time t that it takes a paintbrush to fall from the top of a roof to the ground. The
roof touches the ground, its height is h, its slope is α and the coefficient of friction between
the brush and the roof is f . Assume that the initial velocity of the paintbrush is zero and the
slope of the roof is constant. Also, find the conditions that need to be satisfied for the brush to
actually fall to the ground. Dodo was painting his roof.

In the direction parallel to the plane of the roof, the paintbrush (with a mass m) is affected by
the parallel component of its weight, with magnitude

F = mg sin α .

The magnitude of the friction force Ft, acting in the opposite direction, is

Ft = fFn = fmg cos α .

From Newton’s second law, we obtain the acceleration of the brush as

a = F − Ft

m
= g sin α − fg cos α ,

where the inequality f < tan α must be satisfied - otherwise, the brush is stopped by friction.
If we modify the equation for uniformly accelerated motion

s = 1
2at2

with s = h/ sin α, express the time t and substitute for acceleration, we obtain

t =
√

2s

a
=
√

2h

g (sin α − f cos α) sin α
.
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Just out of interest, if we define
√

2h/g = T (the time of free fall from the roof), we get

t = T√
(sin α − f cos α) sin α

,

which gives us t as a function of the coefficient of friction and the slope of the roof. It can be
seen that for α = 90◦, we get free fall, and for less steep roofs, the fall slows down.

Jozef Lipták
liptak.j@fykos.cz

Problem CD . . . sprinting on a wheelchair
Imagine that we are sitting in an electric wheelchair on an oval athletic track with length l =
= 400.0 m. Calculate the shortest time we need to drive around the oval if the inertial acceler-
ation must not exceed a = 0.1g at any time. We start in the curved part of the oval with an
arbitrary non-zero velocity (which we also aim to optimise). Both linear parts and both curved
parts have lengths l/4. Dodo and his passion for sprinting. . .

The radius of each curved part is r = l
4π . We can travel in these parts only with some maximal

speed v0, at which the centrifugal acceleration is exactly a = 0.1g. The time Tz it takes to travel
through the curves is then

a = 0, 1g = v2
0

r
= v2

04π
l

,

v0 =

√
lg

40π ,

Tz = l

4v0
=
√

5πl
2g

.

When travelling through the linear parts, the wheelchair accelerates half of the distance and
decelerates the other half of the distance, with acceleration of magnitude a = g/10. It takes
time Tp to travel the distance l/8 from the end of a curved part to the middle of the next linear
part (or similarly from the middle of a linear part to the start of the next curved part). The
equations for uniformly accelerated motion say

l

8 = v0Tp + 1
2aT 2

p =

√
lg

40πTp + 1
20gT 2

p .

We got a quadratic equation for the time Tp. Only the positive solution is right, so

Tp =
√

5
2π

√
l

g

(√
1 + π− 1

)
.

The overall time it takes to drive around the oval track is therefore

T = 2Tz + 4Tp =
√

l

g

(
2
√

5π
2 + 4

√
5
2π
(√

1 + π− 1
))

≈ 9.30
√

l

g
.
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After evaluating it numerically, we get T = 59 s, which is slower than the world records in
the 400 m dash for both genders.

Jozef Lipták
liptak.j@fykos.cz

Problem CE . . . dancing
Even thought it sounds quite unlikely, some Matfyz students like dancing. Daniel is trying to
learn advanced steps, for example a simple pirouette. He grabs the hips of his partner and starts
to spin around with her. What is the centrifugal force acting on Daniel’s partner? Imagine that
Daniel is really strong, so he manages to carry his partner just above the floor at the distance
of his stretched arms – let’s consider it r = 0.90 m. Assume that the spinning couple makes f =
= 0.75 spins per second, his partner weighs m1 = 50 kg and Daniel weighs m2 = 70 kg.

Daniel was dreaming about other forms of procrastination.

Daniel’s partner Danka is spinning with an angular velocity ω = 0, 75 ·2πs−1 = 1.5πs−1. Daniel
and Danka are spinning around their common centre of mass, so Danka is at the distance R =
= m2r

m1+m2
= 0.525 m from the axis of rotation. We can calculate the centrifugal force as

F = m1a ,

where a is the centrifugal acceleration, which we can express as a = ω2R. We get the centrifugal
force

F = m1ω2r
.= 583 N .

What’s interesting is that the centrifugal acceleration acting on Danka is approximately 12 m·s−1,
which is more than the acceleration due to gravity. However, Daniel failed and they fell down
after a half-spin.

Daniela Pittnerová
daniela@fykos.cz

Problem CF . . . heat and collisions
Two particles with momenta m1v1 and m2v2 (these are vector quantities) collided and merged.
What was the heat released during the collision? Jindra was playing with marbles.

Let’s start with the laws of conservation of momentum

m1v1 + m2v2 = (m1 + m2)u (1)

and conservation of energy

1
2(m1 + m2) |u|2 + Q = 1

2m1 |v1|2 + 1
2m2 |v2|2 . (2)

We can express the velocity u from the equation (1) as

u = m1v1 + m2v2

m1 + m2
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and substitute into the equation (2)

Q = 1
2m1 |v1|2 + 1

2m2 |v2|2 − 1
2(m1 + m2)

∣∣∣m1v1 + m2v2

m1 + m2

∣∣∣2 .

We can simplify this expression to

Q = 1
2m1 |v1|2 + 1

2m2 |v2|2 − 1
2(m1 + m2)

(
m2

1 |v1|2 + 2m1m2v1 · v2 + m2
2 |v2|2

)
,

Q = m1m2

2(m1 + m2) |v1|2 − m1m2

m1 + m2
v1 · v2 + m1m2

2(m1 + m2) |v2|2 ,

Q = m1m2

2(m1 + m2) (v1 − v2)2 .

As expected, the heat depends only on the difference of the velocities and so, it is the same in
all inertial reference frames.

Jindřich Jelínek
jjelinek@fykos.cz

Problem CG . . . cooking
Danka cooks on a hob with input energy consumption (power) P . She pours 2.00 l of water
with temperature 40 ◦C into a stock pot with temperature 23 ◦C. The water starts boiling after
a time t1 = 6 min. Danka then empties the pot and lets it cool to 70 ◦C. At this moment, Danka
pours 2.00 l of water with temperature 40 ◦C into the pot again. How much time does she save
if she wants to wait until the water starts boiling again? The stock pot has temperature 105 ◦C
when the water is boiling. The hob heats the pot and water with efficiency η = 0.85. The
heat capacity of the pot is C = 439 J·K−1 and the specific heat capacity of water is cv =
= 4 180 J·kg−1·K−1. Danka uses the electric cooker at the dormitory.

Let’s denote the important temperatures by T1 = 23 ◦C, T2 = 40 ◦C, T3 = 70 ◦C, T4 = 105 ◦C.
Water boils at the temperature Tv = 100 ◦C. The heat transfer between the hob and the pot
with the water is described by the calorimetry equation

ηP t1 = C (T4 − T1) + cvV ϱ (Tv − T2) ,

where V is the volume of the water and ϱ is its density. The heat transfer during the second
heating process is described by the equation

ηP t2 = C (T4 − T3) + cvV ϱ (Tv − T2) .

We can eliminate P and η and write

w = t2

t1
= C (T4 − T3) + cvV ϱ (Tv − T2)

C (T4 − T1) + cvV ϱ (Tv − T2) .

The ratio is w = 0.961 6. We can calculate the time difference

∆t = (w − 1) t1
.= −14 s.

The negative sign means that the water starts boiling 14 s earlier than in the first case. Danka
hasn’t saved much time. In reality, the heat capacity of the hob is more important than the
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heat capacity of the pot. When the hob is hot, the water would boil significantly sooner, in
fact.

Daniela Pittnerová
daniela@fykos.cz

Problem CH . . . water in an angular tube
We have a tube with water flowing through it, with a mass flow rate Q and a velocity v. At
one point, this tube is bent in such a way that it has two arms with an angle α between them
(so α = π means that there is no bend). What is the magnitute of the force the water is exerting
on this bend? Legolas is glad that he has no water in his knee.

Through the angular tube, water with mass dm = Qdt flows during a small time period dt.
This changes its velocity by u = v2 − v1. From Newton’s first and third law, we get the force
the water exerts on the angular tube

F = dp
dt

= dmu
dt

= Qu .

After applying some geometry, we get

F = 2Qv cos
(

α

2

)
.

For α = π, we get Fv = 0, which corresponds to the fact that in such a case, the water would
be unaffected.

Šimon Pajger
legolas@fykos.cz

Problem DA . . . the floor is lava

M

m

A member of FYKOS with mass m = 50 kg (depicted in the figure) is
pulling a rope with a constant force F . The mass of the platform is M =
= 50 kg. Can the FYKOS member lift himself above the platform? If yes,
what force does he have to pull with to do so? Neglect the moments of
inertia of all pulleys. Matěj fell into a pit and couldn’t get out.

An important property of every rope in a system of ideal pulleys is that
the force of tension in it is everywhere the same. The platform is pulled
only by the rope, with an acceleration

ap = 3F

M
,

because there are three parts of the rope and each of them is exerting a force F on the platform.
The FYKOS member is pulled upwards by the rope with an acceleration

aF = F

m
,

since the FYKOS member is pulling only one rope and the force it exerts on him is F . Since
after substitution, aF < ap holds for every positive force F , the upwards acceleration of the
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platform will always be greater than that of the FYKOS member. Therefore, he can never pull
himself above the platform.

Accounting for gravity does not affect the result because g can be subtracted from both
accelerations and the inequality remains unchanged.

Matěj Mezera
m.mezera@fykos.cz

Problem DB . . . lift mechanics
A container with water is placed inside a stationary lift. In the container, there is also a cuboidal
weight made of aluminium (with dimensions x = 3.00 cm, y = 4.00 cm and z = 5.00 cm), which
is fully submerged in the water. The weight is hanging on a massless spring with a spring
constant k = 230 N·m−1, which is attached to the ceiling and initially stretched. The lift begins
to move upwards with a constant acceleration a = 3.00 m·s−2. Find the ratio of the spring’s
elongation when the lift is moving to its initial elongation. The density of aluminium is ϱAl =
= 2 700 kg·m−3. Assume that the spring doesn’t stretch far enough to reach the floor.

Dodo carried a plate of soup away from Danka.

In the case when the lift is stationary, the force of gravity Fg, which is acting on the weight,
is compensated by the buoyant force Fv and the tensile force Fp of the spring. It satisfies the
force balance equation

V ϱhg = V ϱvg + kδl0 ,

where V = xyz is the volume of the weight, ϱv is the density of water and δl0 is the initial
elongation of the spring. The accelerating lift is indistinguishable from a stationary one which
is influenced by gravity a + g. Therefore, the force balance is

V ϱh (a + g) = V ϱv (a + g) + kδl .

Now we simply express the elongations of the spring from both equations and calculate their
ratio as

δl

δl0
= 1 + a

g

.= 1.31 .

The elongation of the spring in the accelerating lift is 1.31 times larger.

Daniela Pittnerová
daniela@fykos.cz

Problem DC . . . rotation of the velocity vector
Certainly, you have already calculated common projectile motion - for instance, the trajectory of
a ball which was kicked under an initial angle α (with respect to the ground) and with an initial
speed v0. Find out how the magnitude of angular velocity ω of its velocity vector v depends
on the initial speed v0, the initial angle α, the instantaneous speed v and the gravitational
acceleration g. Robo was thinking during a PE class.

The acceleration acting in the direction perpendicular to the trajectory (the radial direction)
can be expressed as an = g cos ϑ, where ϑ is angle between the velocity vector and the horizon-
tal direction. Since the instantaneous velocity vector is tangential to the trajectory, the angle
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satisfies cos ϑ = vx/v. No force acts on the ball in the horizontal direction, therefore its hori-
zontal velocity remains constant, vx = v0 cos α. We also know that the centripetal acceleration
satisfies

ac = v2

R
= ωv ,

where R is the radius of curvature of the trajectory in the current position. The motion of
the ball may be locally approximated by circular motion. For this motion, the angular velocity
of the velocity vector is the same as the angular velocity of rotation of the body around the
centre of curvature. We write the equation for the accelerations and express the desired angular
velocity

ω = ac

v
= an

v
= gv0 cos α

v2 .

Róbert Jurčo
robert.jurco@fykos.cz

Problem DD . . . heavy can
Imagine a symmetric can. Its mass is m, its height is H and the area of each base is S. There
is a liquid with density ϱ in the can.

We want the height of the centre of mass of the system can+liquid to be the smallest
possible. For what height h of the liquid does it happen? Lego loves beer and physics.

The can is symmetric, so its centre of mass is H/2 above the ground. The height of the centre
of mass of the liquid is similarly h/2. The height of their common centre of mass is

x = m1x1 + m2x2

m1 + m2
= mH/2 + Shϱh/2

m + Shϱ
.

One of the ways to solve this is to differentiate with respect to h and find local extrema. However,
there’s a quicker (and more elegant) way. The centre of mass is in its lowest position when it
is at the same height as the level of the liquid. If we pour more water in such a situation, the
centre of mass obviously rises up. If we slop some liquid (which is equivalent to placing a liquid
with density −ϱ below the current level of the liquid), the centre of mass rises again. We can
therefore conclude that the minimum height of the centre of mass is x = h,

h = 1
2

mH + Sh2ϱ

m + Shϱ
,

0 = Sϱh2 + 2mh − mH .

The solution is the only positive root of this equation

h =
−2m +

√
4m2 + 4Hmsϱ

2Sϱ
=
√

m2 + HmSϱ − m

Sϱ
.

Šimon Pajger
legolas@fykos.cz
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Problem DE . . . Jindra the tractor driver
Tractor driver Jindra has an uncommon hobby – he likes moving from some point A to B in
the shortest possible time. Now he finds himself in a field, at the point A, and the point B is
located at the distance d to the east from A. The speed of the tractor depends on the azimuth
of its motion as v = v0 |cos α| (so v = v0 if it’s moving northwards or southwards). How long
does it take Jindra to reach point B? Jindra still hasn’t acquired a driving licence.

We solve the problem using a trick. Imagine a Cartesian coordinate system in the field such that
its x axis points to the east and the y axis points to the north. Jindra has to move by a distance d
in the direction of the x axis. The azimuth is measured clockwise from the northward direction.
The x-component of the tractor’s velocity can be calculated by multiplying the speed by the
sine of the azimuth

vx = v0 |cos α| sin α .

We are interested in motion in the positive x-direction, i.e. α ∈ ⟨0◦, 180◦⟩. Consider that

vx = v0 |cos α sin α| .

We find the azimuth corresponding to the maximal velocity by placing the derivative equal
to zero. Since we know that in the given range, the velocity is always positive, it’s enough to
maximise the expression inside the absolute value

0 = d cos α sin α

dα
= cos2 α − sin2 α .

The solutions are α1 = 45◦ and α2 = 135◦. Alternatively, we recall double angle formula |cos α sin α| =
= |sin 2α| /2, so we get maxima of 1 for 2α1 = 90 ◦ and 2α2 = 270 ◦.

Now we are asking: “Can Jindra move in such a direction that his velocity in the positive
direction of the x axis would always be equal to this maximum?” Yes, he can. For example, if
he moves on the azimuth α1 = 45◦ half of the route and on the azimuth α2 = 135◦ afterwards.
This ensures that his final y coordinate remains the same as at the beginning. Assuming that
he always moves with maximal velocity in the direction of the x axis, there is no faster route.

We can calculate the time necessary to move to point B as

t = d

vx
= d

v0 |cos α1 sin α1| = 2d

v0
.

The time the route takes Jindra is t = 2d/v0.

Jindřich Jelínek
jjelinek@fykos.cz

Problem DF . . . lens-like mirror
We have a thin plano-convex lens with a radius of curvature R and a refractive index n. Onto
the convex side of the lens, we place a shiny foil so that it behaves as a convex spherical mirror
with a radius R. Find the (positive) focal length of this system.

Matěj is checking himself out in a mirror.

We will find the solution using geometrical methods. A focal point is a place into which light
beams parallel to the optical axis are focused. Let us take a beam, parallel to the optical axis,
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at a small distance x from the axis. Since the lens is thin, we will use the paraxial approxima-
tion sin x ≈ x, tan x ≈ x.

• passage through the flat side - The beam doesn’t change its direction because it’s
incident on this side perpendicularly.

• reflection from the mirror - The beam, parallel to the axis, is reflected towards the
focal point of the mirror, at the distance fz = R

2 . Therefore, the angle between the axis
and the reflected beam is α = x

fz
.

• second passage through the flat side - The beam refracts in such a way that after
passing through the lens, its angle with respect to the axis is β, which is given by Snell’s
law nα = β.

Since the lens is thin, the beam exits the lens again at the distance x from the optical axis.
The difference is that now, it’s at the angle β with respect to it. The focal point we’re looking
for is the place at which it crosses the optical axis and its distance from the lens is

f = x

β
= x

nα
= x

n x
fz

= fz

n
= R

2n
.

We can see that the point of intersection doesn’t depend on the distance x between the beam
and the optical axis and therefore, all beams intersect the axis at the same point. Of course, this
only applies for sufficiently small x, when we can use the paraxial approximation. Otherwise,
we would find that both the lens and the mirror have optical defects, causing the parallel beams
further away from the axis to miss this focal point.

Matěj Mezera
m.mezera@fykos.cz

Problem DG . . . at the absolute bottom
Dano has a dry well with constant circular cross-section and depth h = 23.0 m. When he
watches the sky from the centre at the bottom of the well, he sees all the stars which have
a smaller zenith distance than α = 8.00◦. What is the minimum volume of an unknown liquid
with a refractive index n = 2.31 that Dano has to pour into the well in order to see all the stars
with the zenith distance 2α? . . . however, Jáchym knows how it ends.

In both cases, Dano’s view is limited by the edge of the well. We can describe the initial situation
by the equation r = h tan α, where r is the radius of the well. After the liquid is poured into the
well, refraction of light occurs at its surface. The angle of refraction is 2α and we can denote
the angle of incidence by β. From Snell’s law, we get

sin 2α = n sin β ,

where n is the refractive index of the liquid. Let h1 be the distance from the bottom to the
surface of the liquid and h2 the distance between the surface and the upper edge of the well,
so h1 + h2 = h. Similarly, let r1 be the distance of the centre from the point of refraction
of a furthest ray, measured along the bottom of the well, and r2 the distance of the point of
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refraction from the edge of the well, so r1 + r2 = r. Now, we can write the equation for the
upper triangle

sin 2α = r2√
r2

2 + h2
2

,

from which we get

r2 =
(
sin−2 (2α) − 1

)− 1
2 h2 = tan (2α) h2 = k2h2 .

Similarly, for the lower triangle, we can write the equation

r1 =
(
sin−2 β − 1

)− 1
2 h1 =

(
n2 sin−2 (2α) − 1

)− 1
2 h1 = k1h1 .

In these equations, we have used the sine in order to directly use Snell’s law. We hid the ugly
expressions into the constants k1 and k2. Now, we substitute for r1 and r2 in the equation
r = r1 + r2, which gives us a system of two equations for two variables

h = h1 + h2 ,

r = k1h1 + k2h2 .

Then, the solution for the height h is

β

2α

r1

r2

h1

h2

h1 = k2h − r

k2 − k1
.

However, we want to know the total volume of the liquid, so we have to multiply the height by
the area of the cross-section πr2. Now, we can substitute for r and k2 and get the final result

V = πr2h1 = πh3 tan 2α − tan α

tan 2α − k1
tan2 α

.= 663 m3 .

Jáchym Bártík
tuaki@fykos.cz
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Problem DH . . . retroreflection
Retroreflective elements are called such because they reflect light back to the source. There are
two ways of constructing them. We can cover the surface by miniature corner reflectors (like
in bike reflectors) or we can cover it by a reflective material and partially embed transparent
balls into it (like in white strips on a reflective vest). Calculate an ideal refractive index of the
balls in order to reflect back most of the incoming light.

Jindra was solving the competition N-trophy9.
The material is a retroreflector when the incoming ray is parallel to the outgoing ray. Let’s
draw a line connecting the source of the light and the centre of a ball and assume that the
diameter of the ball is insignificantly small. An incoming ray is parallel to the optical axis, it
impacts the surface of the ball at a perpendicular distance h from the optical axis and it forms
an angle α with the normal at the point of impact. The radius of the ball is R. The paraxial
approximation is valid while h/R ≪ 1. Rays that are further away from the axis are reflected
more to the sides, but in this case, such divergence of the reflected light isn’t too significant.
We can write

sin α = h

R
≈ α .

From Snell’s law, we calculate the angle of refraction β, and we also assume β ≪ 1

sin α = n sin β ,

h

R
= nβ .

Retroreflection occurs when the refracted ray hits the point where the optical axis intersects
the opposite surface of the ball. Then, the two rays are symmetrical with respect to the optical
axis and the outgoing ray is parallel to the optical axis (like the incoming ray). Under the small
angle approximation, we can write β = h/(2R), so

h

R
= n

h

2R
,

n = 2 .

The ideal refractive index of the ball is n = 2.
Jindřich Jelínek

jjelinek@fykos.cz

Problem EA . . . jerked around
Find the mean square modulus of the change in the vector of velocity of a pollen particle with
mass M = 250 ng when this particle collides head on with an atom of argon in air (i.e. in such
a way that they are moving directly towards each other). The temperature is t = 25.3 ◦C and
the pressure is p = 1 003 hPa. Dodo took a full metro back from school.
A perfectly elastic collision implies conservation of both momentum and kinetic energy. If the
pollen particle remains at rest at the beginning (we can simply choose a coordinate system
where it does), then after the collision, it is moving with a velocity u which obeys

mv = Mu + mv′ ,

mv2 = Mu2 + mv′2 ,
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where m is the mass of an atom of argon and v, v′ are the initial and new velocity of the atom
respectively. After substituting for v′ from the first equation, we obtain

u = 2vm

M + m
≈ 2vm

M
.

We’re supposed to find the mean square value of this quantity. From the equipartition theorem,
we have

1
2mv2

k = s

2kBT ,

where T is the thermodynamic temperature of the gas and s is the number of active degrees of
freedom. After substitution, we get the mean square value of u as

uk = 2
√

skBT m

M
.

The mass of an argon atom can be calculated using the Avogadro constant and molar mass
as m = Mm/NA = 6.64 · 10−26 kg. An argon atom has only translational degrees of freedom,
so s = 3. The numeric value is uk = 2.3 · 10−13 m·s−1.

Jozef Lipták
liptak.j@fykos.cz

Problem EB . . . green shift
Chuck Norris has such a fast car that he sometimes drives through an orange traffic light
because he sees it as green. But that’s nothing. Paťo (the one who ran a 12-minute run in 6
minutes) runs so fast that he sees red as green. The wavelengths of green, orange and red light
are λz = 550nm, λo = 600nm and λc = 700nm respectively. What is the difference between the
speeds of Paťo and Chuck Norris’s car? Lego was running towards a crosswalk.

We may assume that Paťo’s speed and Chuck Norris’s car’s speed are both relativistic. At the
same time, the waves are light waves, not sound waves, so a relativistic version of the Doppler
Law must be used

λobserver = λsource

√
1 − v/c

1 + v/c
.

This formula can either be found in the tables or it can be derived from the original Doppler
Law by considering relativistic effects. The ratio v/c is commonly referred to as β. In addition,
if we denote λobserver/λsource = α, we can express

β = 1 − α2

1 + α2 .

Now we get the speed of Chuck Norris’s car

vChuck = 1 − (λz/λo)2

1 + (λz/λo)2 c
.= 2.60 · 107 m·s−1 .

Similarly, we have for Paťo

vPato = 1 − (λz/λc)2

1 + (λz/λc)2 c
.= 7.10 · 107 m·s−1 .
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Therefore, Paťo is faster than Chuck Norris’s car by

vPato − vChuck =
2λ2

z
(
λ2

c − λ2
o
)

(λ2
c + λ2z) (λ2

o + λ2z)c
.= 0.15c

.= 4.49 · 107 m·s−1

Šimon Pajger
legolas@fykos.cz

Problem EC . . . Are we climbing?
We are sitting in a train inside a tunnel. The train driver decided to let the train move only by
its own inertia. What is the angle α between the water level in a glass and the floor of the train?
Assume that when the train is standing on a horizontal surface, the floor is also horizontal. The
elevation of the track is t = 1.2 % and the rolling resistance coefficient between the track and
the wheels of the train is f = 0.002. Dodo was travelling back to school.

The train is moving uphill. First, let’s convert the elevation from percent to an angle. Elevation
is the change in altitude per unit horizontal displacement, so the angle is φ = arctan t. The
motion of the train is directly decelerated by the tangential component of the gravity of Earth
and by the friction given by its normal component. The acceleration of the train in the direction
of motion is

av = at + fan = g (sin φ + f cos φ) .

In the non-inertial reference frame connected with the train, there is the inertial acceleration
parallel with the floor, with magnitude av, but in the opposite direction (in the direction of
motion of the train), and the real acceleration - the acceleration due to gravity, with magnitude g
and at an angle φ from the normal to the floor, towards the back of the train. To find the angle
between the water level and the floor, we need to find the angle between the vertical and the
net force because these angles are the same. Decomposing the acceleration due to gravity into
the normal and tangential component to the train floor, we get

ak = g cos φ ,

ar = g sin φ .

Adding the inertial acceleration az = −av to this tangential component, we get the desired
angle as the arctangent of the ratio of magnitudes of accelerations in the “horizontal” and the
“vertical” direction

α = arctan ar + az

ak
= arctan ar − av

ak
= arctan sin φ − (sin φ + f cos φ)

cos φ
= − arctan f

.= −0.11 ◦ .

We are interested only in its magnitude, the sign gives information about the orientation of the
water level. The answer is α

.= 0.11 ◦. An interesting fact that we can notice from this solution
is that we cannot say whether the train goes uphill or not. This follows from the Einstein
equivalence principle.

Jozef Lipták
liptak.j@fykos.cz
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Problem ED . . . hole in a planet
At a large distance from the Earth, there is a rocket which has run out of fuel. The rocket is
attracted to the Earth and NASA scientists are trying to figure out how to save the crew. Honza
suggests digging a hole through the Earth, so that the rocket would not hit the ground, but
fly through the tunnel. For simplicity, assume that the rocket is initially at rest at an infinite
distance from the Earth. The tunnel through the Earth is aligned with the direction of the fall
of the rocket. Honza wants to know what the velocity of the rocket would be in the middle of
the Earth. Assume that the Earth is homogeneous. Robo found himself inside a planet.

The mass of the Earth is M and its radius is R. At the beginning, the rocket has both zero
potential energy and zero kinetic energy, and the mechanical energy is conserved, so we know
that in the centre of the Earth, the sum of the kinetic and potential energies would be zero
again.

0 = 1
2mv2 + Ep .

Now, we need to find the gravitational potential in the centre of the Earth φ. From the potential,
one can easily find the potential energy as

Ep = mφ .

We know that the gravitational potential of the Earth is given by

φR = −GM

R
.

From Gauss’s law for gravity, we know the intensity of the gravitational field inside the Earth
at a distance r from the centre

E = −GMr

r2 ,

where Mr is the mass below the radius r. We assumed that the Earth is homogeneous, so the
mass Mr is directly proportional to the volume, which is proportional to the cube of the radius

Mr = r3

R3 M .

The potential in the centre of the Earth φ0 is the sum of the potential on the surface and the
integral of −E from the surface to the centre of the Earth

φ0 = −3GM

2R
.

Substituting for Ep in the law of energy conservation, we get

0 = 1
2mv2 − 3GMm

2R

This gives the velocity of the rocket in the centre of the Earth v =
√

3GM
R

= 13.7 · 103 m·s−1.

Róbert Jurčo
robert.jurco@fykos.cz
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Problem EE . . . slippery rope
Dodo has a well and a bucket. The mass of the bucket is m = 1.75 kg and it can hold at most
V = 15.2 l of water. The bucket is hanging from a rope, which is thrown over a fixed log with
a circular cross-section. When Dodo pulls the bucket full of water upwards, he pulls the rope
with a force F = 237 N. Find the force which Dodo must exert in order to drop the empty
bucket down with a constant velocity. Jáchym prefers aid climbing.

In this problem, it is essential to know how friction acts on a rope attached around a cylinder
with circular cross-section. The exact answer to that can be found e.g. in the solutions of
FYKOS problems 27.III.5 and 32.VI.4. In this case, it is only necessary to know that the
ratio between the force exerted on one end of the rope and the force exerted on the other end
is something similar to an exponential of an expression involving the coefficient of friction and
the total angle of contact between the rope and cylinder. All these values are the same in both
situations, so the ratio of the forces on both ends of the rope is also the same.

In the first case, the gravity of the bucket with water is

Fs = (m + ϱV ) g ,

and it’s the “weaker” force, while on the other end, Dodo pulls with a force F . In the second
case, the force F ′ which Dodo utilises to slow down the rope is the “weaker” force. The force
that acts at the other end is the gravity of the empty bucket itself

Fb = mg .

From the observation above, we get

F

Fs
= Fb

F ′ = const > 1 .

From there, we can simply express the desired force

F ′ = FbFs

F
= m + ϱV

F
mg2 .= 12.0 N .

Finally, we can see that it really is less than the approximately 17 N required to balance an
empty bucket without friction.

Jáchym Bártík
tuaki@fykos.cz

Problem EF . . . RLC for sure this time

R L

C

U

Lego took Dodo’s circuit from the Online Physics Brawl and slightly
changed it. Now it is the circuit shown in the figure, composed
of a coil with inductance L = 10.0 mH, a capacitor with capaci-
tance C = 4.70 μF, a resistor with resistance R = 1.00 kΩ, and an
AC voltage source with the effective value of voltage Uef = 230 V
and adjustable frequency. Lego set the frequency of the AC source
in such a way that the amplitude of the current would be maximised.
What is the power drawn by the whole circuit?

Lego felt sorry for FOL participants... so he set a similar troll problem here as well.
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We could solve the problem using complex numbers, but we can solve it more easily using some
basic knowledge about alternating current.

For example, it is useful to know that for a series RLC circuit (i.e. in which the current
can’t bypass the resistor through the coil or capacitor), the current (for a given voltage) is
maximised when the frequency of the current is equal to the resonant frequency of the given
circuit. That’s because at the resonant frequency, the impedances of the coil and capacitor
cancel out, so Z = R.

Therefore, for the effective value of the current, we have Ief = Uef/Z = Uef/R. The current
is not phase shifted in any way with respect to the voltage, so φ = 0.

What are the effective values of the voltage and current? Effective value is defined as the
amplitude of a given quantity divided by the square root of 2 (so Ief = Imax/

√
2 and accord-

ingly for the voltage). It’s defined that way so that the formula P = UefIef cos φ would hold.
Since cos 0 = 1, we get the power as

P = UefIef = U2
ef

R
= 52.9 W ,

which is approximately the power of a standard light bulb and very accurately, the solution of
the already mentioned problem from the Online Physics Brawl.

Šimon Pajger
legolas@fykos.cz

Problem EG . . . rotation of polarisation
We all know that when horizontally polarised light hits an ideal vertical polarisation filter, the
light intensity behind the filter is zero - the light cannot pass through the filter. However, if we
place another polarisation filter between the two, light can pass through the last filter. Suppose
that we have N filters in a series such that each one is rotated by the same angle δ relative to
the previous filter. Additionally, the last filter is rotated by 90◦ relative to the first one. We let
light with an original intensity I0 pass through the filters. For a large value of N , estimate how
much the intensity of the light decreases after passing through all the filters.

Štěpán makes photons pass through.
A filter rotated by δ relative to the polarisation decreases the strength of the electric field
passing through it from E1 to E2, where

|E2| = |E1| cos δ ,

Since the intensity is proportional to the square of the field strength, it decreases from I1 to I2,
where

I2 = I1 cos2 δ .

Therefore, after passing through N filters,

I = I0 cos2N δ = I0 cos2N
(
π

2N

)
,

where I0 is the initial intensity and we plugged in δ = π
2N

. For large values of N , we can
approximate the cosine as

cos
(
π

2N

)
≈ 1 − π2

2 · (2N)2 = 1 − π2

8N2
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and then, we can write

I ≈ (1 − π2

8N2 )2N I0 ≈
(

1 − π2

4N

)
I0 .

The intensity decreased by π2

4N
I0.

Štěpán Marek
stepan.marek@fykos.cz

Problem EH . . . TNT planet
Consider a sphere of TNT floating freely in space. Assume that firing one kilogram of TNT
releases 4.184 MJ of energy, which is immediately converted into kinetic energy of the reaction
products (whose mass is the same as the mass of the original TNT, 1 kg). What is the radius
of the largest sphere with density ϱ = 1 650 kg·m−3 that can completely scatter through the
explosion (i.e. all its mass is thrown to infinity, where it does not gravitationally affect itself
anymore)? Jáchym joined Karel and decided to also destroy a planet.

Let our planet have a radius R and a mass

M = 4
3πR

3ϱ .

If we denote the calorific value of trinitrotoluene as H = 4.184 MJ·kg−1, the total energy of the
explosion is

Ev = HM = 4
3πR

3Hϱ .

Now we take the upper layer of the planet, with width dr, and move it to infinity. The
gravitational potential on the surface of a planet with radius r and mass m is

φ = −Gm

r
,

so we have to add energy
dE = −φdm ,

where the mass of the layer dm is calculated as

dm = 4πr2ϱdr .

By doing so, we get rid of the upper layer of the planet, and thereby reduce its radius and
weight

m = 4
3πr

3ϱ .

We calculate the total gravitational energy needed to move all parts of the planet to infinity
as the integral

Eg =
∫ R

0
dE = −

∫ R

0
φ dm = 16π2Gϱ2

3

∫ R

0
r4 dr = 16π2Gϱ2

3

[
r5

5

]R

0

= 16π2GR5ϱ2

15 .
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We see that E g grows with the fifth power of the radius, while Ev only grows with the third
power. Therefore, for all R larger than R0 (for which Eg > E v), we will not be able to disperse
the planet perfectly. We can write the result as

R0 =
√

5H

4πGϱ

.= 3 888 km .

Jáchym Bártík
tuaki@fykos.cz

Problem FA . . . Jindra II. the tractor driver
Jindra the tractor driver has an unsual hobby – he likes moving from some point A to B in
the shortest possible time. At this moment, Jindra with his tractor is in a field, at the point A,
and the point B is located at a distance r from the point A in the same field. At a distance d
from the line segment AB, there is a driveway running parallel to it. In the field, the tractor
moves with the same velocity u in all directions and on the driveway, it moves with a velocity v,
where v > u. Jindra found out that it does not matter if he drives from the point A to the
point B directly or if he first drives from the point A onto the driveway, then along the driveway
and after a while, back into the field towards the point B. In both cases, the time of the journey
is t. Express the ratio d/r using u and v.

Jindra wanted to experience total tractor reflection.
First, we must derive the formulas describing the time of driving directly from A to B and the
time of travel when using the driveway. Let tp denote the travel time for the direct case. We
can calculate it from the formula for uniform linear motion

tp = r

u
.

It gets slightly more complicated with the driveway. Consider that there is an infinite number
of ways in which the tractor can get on the driveway, as well as an infinite number of ways to
get off it. We have to find the most efficient one. The tractor rides from the point A to the
point where it gets on the driveway in a straight line .1 It also rides in a straight line from the
point where it leaves the road to the point B. Let’s denote the angle between the trajectory of
the tractor before it reaches the driveway and a normal to the driveway by αA. Similarly, let’s
denote the angle of its trajectory after it leaves the driveway by αB. The total time of the ride
is

ts = d

u cos αA
+ r − d tan αA − d tan αB

v
+ d

u cos αB
. (3)

We want to choose the angles αA and αB in such a way that the time ts is minimal. A local
extremum of a function may be found by placing the derivative equal to zero

dts

dαA
= d sin αA

u cos2 αA
− d

v cos2 αA
= 0 ,

d(v sin αA − u)
uv cos2 αA

= 0 ,

sin αA = u

v
.

1Since the velocity of the tractor is constant in all directions, motion in a straight line is the most time-
efficient.
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dts

dαB
= d sin αB

u cos2 αB
− d

v cos2 αB
= 0 ,

d(v sin αB − u)
uv cos2 αB

= 0 ,

sin αB = u

v
.

This result may be interpreted with knowledge from optics: the tractor must approach the
boundary field-driveway at a critical angle. Since αA and αB are equal, from now on, we’ll
denote αA = αB = α. From relations between goniometric functions cos α =

√
1 − (u/v)2

and tan α = (u/v)/
√

1 − (u/v)2, which we substitute into the equation (3),

ts = 2d

u cos α
+ r − 2d tan α

v
= r

v
+ 2d

v − u sin α

uv cos α
,

ts = r

v
+ 2d

v − u2

v

u
√

v2 − u2
,

ts = r

v
+ 2d

uv

√
v2 − u2 .

From the condition in the problem statement, we know that tp = ts = t, so

r

u
= r

v
+ 2d

uv

√
v2 − u2 ,

r (v − u) = 2d
√

v2 − u2 ,

d

r
= 1

2

√
v − u

v + u
.

If Jindra’s ride from A to B takes the same time directly through the field as with the detour
on the driveway, then the ratio of distances d and r satisfies d/r = 1/2

√
(v − u)/(v + u).

Jindřich Jelínek
jjelinek@fykos.cz

Problem FB . . . dome
The hemispherical dome of an observatory has a diameter d = 20 m and mass m = 200 t,
distributed uniformly. Find the minimal power of motors moving the dome which is needed to
turn the dome by 180◦ in t = 30 s. The dome is sitting frictionlessly on track bearings. At the
start and at the end, the dome must be stationary. Dodo likes to observe the sky.

Let us take a look at a different problem first. If we are given the maximal power, the fastest
way to turn the dome is to accelerate it with this maximal power half of the time and decelerate
it in the second half of the time (also with maximal power). That means it rotates with the
maximum possible angular velocity at each point in time, so it turns in the shortest possible
time. The desired power is the one which turns the dome in the given time t (we are turning
it in this fastest way). Therefore, we need to find the power required to turn the dome by the
angle Φ = π/2 = 90◦ in t/2 = τ = 15 s with constant acceleration.
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Since we have a constant power P , the kinetic energy satisfies

Ek = 1
2Iω2 = P t ,

where I is the moment of inertia of a hemisphere and ω is its instantaneous angular velocity
at time t. We express the angular velocity and after integration by time from the beginning to
the half-turn, we have

ω =

√
2P t

I
,

Φ =
∫ t

0
ω dt =

∫ τ

0

√
2P t

I
dt = 2

3

√
2P

I
τ

3
2 .

From there, we can express the desired power as

P = 9Φ2I

8τ3 = 9Φ2I

t3 .

Now we need only to find the moment of inertia of the hemisphere. It can be calculated as
half of the moment of inertia of a sphere (not a ball, by sphere we mean only the surface, or
rather a thin layer underneath it), since it’s cut in half symmetrically (i.e. the upper and lower
hemispheres have the same moments of inertia with respect to the given axis). The hemisphere
also has half of the weight of a whole sphere. Therefore

I = 2
3mR2 = 1

6md2 ,

which, after substitution into the expression for power, gives us

P = 3Φ2md2

2t3 = 3π2md2

8t3
.= 11.0 kW .

The power required to turn the hemisphere in the given time is P = 11.0 kW.

Jozef Lipták
liptak.j@fykos.cz

Problem FC . . . light please
On a ceiling at a height h = 2.5 m, there is a light bulb that shines isotropically into the whole
space below it with a luminous flux Φ = 1400 lm. How large is the area on the ground where
the illuminance is greater than E0 = 25 lx? Danka needs better lights at the dorm.

Illuminance at a distance r from the source is given by the formula

E = I

r2 cos α ,

where I is the luminous intensity of the source and α is the angle between the incident beam
and the normal to the illuminated area. For the luminous intensity, we have

I = Φ
Θ ,
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where Θ is the solid angle at which light propagates from the source. In our case, Θ = 2π.
The illuminance is then E = Φ cos α

2πr2 . The distance r is simply expressed from a right triangle
as r = h

cos α
. Then, the condition for illumination can be written as

Φ cos3 α

2πh2 > E0 .

From there, we get the condition cos α > 3
√

E0h22π
Φ , so the maximum angle is αm ≈ 27.3 ◦.

Then, the area of   the circle is S = πx2, where x = h tan αm, so S = πh2 tan2 α
.= 5.2 m2. The

area on the ground where the illuminance is greater than 25 lx is about 5.2 m2.

Daniela Pittnerová
daniela@fykos.cz

Problem FD . . . electron-y
What are the possible values of the total electron spin quantum number of a neutral atom of
nitrogen? For each option, it is possible to find the most energetically favourable configuration.
State the values of the spin in the order that corresponds to increasing energy of these confugu-
rations. Dodo is breaking Hund’s rules.

The spin quantum number of an electron is 1/2 and an atom of nitrogen has 7 electrons. The
total value of the electron spin of the whole atom can reach only the values which we can get
by choosing the signs in the expression∣∣∣12 ± 1

2 ± 1
2 ± 1

2 ± 1
2 ± 1

2 ± 1
2

∣∣∣ ,

so after combining the spins, we get values 1/2, 3/2, 5/2 and 7/2. Pauli’s principle implies that
a full orbital has spin 0. According to Hund’s rules, the lowest energy state of the nitrogen
atom is 1s22s22p1

x2p1
y2p1

z, where in p orbitals, all of the spins are oriented the same direction
(WLOG2 up). Then, the nitrogen has a total spin 3/2, which we find as the difference between
the number of electrons with upward spin and the number of electrons with downward spin. For
the other options, we need to increase the energy. For the total spin 1/2, a state with only one
unpaired electron works - for instance, 1s22s22p2

x2p1
y2p0

z; another option is to take the ground
state and just flip the spin of one of the unpaired electrons. For the other options, we can’t use
only the orbitals that are full in the ground state, because we need to have at least 5 unpaired
electrons. For a spin 5/2, we have to open the orbital 3s and use the state 1s22s12p1

x2p1
y2p1

z3s1,
which will have much higher energy. The energetically worst is the lowest-energy state with the

2Without Loss Of Generality
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spin 7/2, which requires us to open one more orbital 3p; all seven lowest-energy orbitals need
to have unpaired electrons, so the configuration is 1s12s12p1

x2p1
y2p1

z3s13p1.

S = 3
2 : ↿⇂

1s

↿⇂
2s

↿ ↿ ↿
2p

S = 1
2 : ↿⇂

1s

↿⇂
2s

↿⇂ ↿
2p

S = 5
2 : ↿⇂

1s

↿
2s

↿ ↿ ↿
2p

↿
3s

S = 7
2 : ↿

1s

↿
2s

↿ ↿ ↿
2p

↿
3s

↿
3p

Jozef Lipták
liptak.j@fykos.cz

Problem FE . . . thirteen wells
Jáchym usurped all twelve wells from the previous problems and added one more, the thirteenth
well. Then, to each well, he poured V0 = 169.00 m3 of one of thirteen different liquids. The last,
thirteenth well, was full of blood. The ritual of invoking demons could begin. First, Jáchym
transferred a volume V = 13.00 m3 from the thirteenth well to the first one. After proper
mixing, he transferred a volume V from the first well back to the thirteenth well. Then, he
mixed up the liquid in the thirteenth well again and repeated the process with the second well,
the third well and so on, up to the 12-th well. Altogether, there were 24 pourings. In the end,
Jáchym measured the volume fractions of all liquids in the thirteenth well and multiplied these
values. What was the result?

Jáchym was inspired by the problem “thirteen barrels” from the 7th Online Physics Brawl.

Let’s substitute k = V
V0

and assume from now on that the volume in each well is 1. The
composition of the liquid in the thirteenth well after i steps is described by a vector xi. The
concentration of the j-th liquid is expressed by the number xj

i , where the blood has the index 0.
At the begining (before all pourings), we may write

x0
0 = 1 ,

xj
0 = 0 ∀j > 0 .

The convention used in this problem is as follows: We have thirteen vectors x, which are
indexed from x0 for the initial state to x12 for the final state. Each of these vectors has thirteen
independent components denoted by upper indices (the notation is usually used for powers, but
not in this case), so xj

i is the j-th component of the vector xi and it’s just a number (a scalar).

Now, we will proceed by induction. After i − 1 steps, we are in the state described by
the vector xi−1. We take the volume V = kV0 from the thirteenth well, represented by the
expression kxi−1, and pour it into the i-th well. This well was full of the i-th liquid, so we
can describe its initial composition by the vector ei, whose i-th component is 1 and all other
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components are 0. After the mixing of the initial liquid and new liquid from the 13-th well, we
get the mixture described by ei + kxi−1.

The volume of the i-th well is now V ′ = V +V0 = (1 + k) V0. From that, we take the volume

V = kV0 = k

1 + k
V ′ .

Into the thirteenth well, we pour the liquid described by

k

1 + k
(ei + kxi−1) .

Before this step, there was the mixture xi−1 in the 13-th well; after taking the volume kV0,
there remained (1 − k) xi−1, and we pour the mixture described by the expression above into
it. The resulting mixture is

xi = (1 − k) xi−1 + k

1 + k
(ei + kxi−1) = xi−1 + kei

1 + k
.

We just expressed the change in the composition of the mixture in the 13-th well for one step.
It was more or less a trivial application of the mixing equation, but we worked with 13 compo-
nents at once. The notation we used may seem a bit complicated, but that is because we worked
quite generally. On the other hand, we now have a formula that applies from the beginning to
the end of the ritual.

Notice that the i-th step is the only event in which the i-th liquid is added to the thirteenth
well. The concentration of the i-th liquid is now just decreasing (1 + k) times in each step. Now,
we can write the final composition of the mixture in the thirteenth well

x12 = e0

(1 + k)12 + k

1 + k

12∑
j=1

1
(1 + k)12−j

ej .

We want the product of volume fractions, i.e. the product of the expressions before the unit
vectors e in the expression above. Let’s denote the result of this problem by P . Then, we may
write

P = 1
(1 + k)12 ·

(
k

1 + k

)12
·

12∏
j=1

1
(1 + k)12−j

= k12

(1 + k)24 ·
11∏

j=0

1
(1 + k)j

=

= k12

(1 + k)90 = V 12V 78
0 (V + V0)−90 .= 5.45 · 10−17 .

Jáchym Bártík
tuaki@fykos.cz
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Problem FF . . . boiling
Mikuláš has a well, but he is too lazy to pull water out of it by hand. Therefore, he bought
a pump with an electric motor, whose efficiency η does not depend on the voltage or the current.
What is the minimal depth of the well such that it would be more efficient to convert water
into steam instead of pumping normally? The original temperature of the water is T and it
would be boiled by a spiral with resistance R. The resistance per unit length of the power
line that connects the spiral with the voltage source on the ground is λ. We expect a general
result expressed using the quantities specified in the problem statement and generally known
constants. Jáchym remembered the problem DA from the 11. FYKOSí Fyziklání.
Let’s denote the depth of the well by h. Then the resistance of the power line is hλ. The power
line and the spiral create a series electrical circuit with resistors and a source. As we want to
minimise h, we should choose the voltage U on the source in a way that makes the heating the
most efficient. The current in the network is

I = U

R + hλ
,

and the thermal power of the spiral is

Pd = URI = RI2 = R

(R + hλ)2 U2 .

The corresponding electrical power of the engine is

Pm = ηUI = ηUI = η
1

R + hλ
U2 = η

R + hλ

R
Pd .

Now, we have to find the mass of water that we move up per unit time with this power. In the
case of the pump, it’s quite easy, because the potential energy is mgh, so the mass flow rate is

qm = Pm

gh
.

To boil the water, we have to supply the energy m (c (Tv − T ) + lv), where Tv is the boiling
point, c is the specific heat capacity and lv is the specific latent heat of vaporisation. Altogether,
we get

qd = Pd

c (Tv − T ) + lv
.

We want to know when the mass flow rate is greater for boiling. This corresponds to the
condition qd ≥ qm, or

Pd

c (Tv − T ) + lv
≥ Pm

gh
,

Rg

η (c (Tv − T ) + lv)
h

R + hλ
≥ 1 .

Now, we can see that the expression on the left is an increasing function that passes through
the origin. That implies that equality holds for no more than one value h0, and for all possi-
ble h > h0, the condition above holds. Finally, we express the result

h0 = Rη (c (Tv − T ) + lv)
Rg − λη (c (Tv − T ) + lv) =

(
g

η (c (Tv − T ) + lv) − λ

R

)−1

.
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Jáchym Bártík
tuaki@fykos.cz

Problem FG . . . inverse well
Jáchym has an inverse well – water is constantly being replenished into it with a constant mass
flow rate q = 17.0 kg·min−1 by a stream with a circular cross section. At what depth does
continuous flow become unstable and break down into droplets with a radius r = 2.5 mm? The
velocity of the water at the top of the well and air resistance are negligible.

Jáchym likes alternative wells.

Nature ”tries” to minimise the total energy of any system. The droplets are being formed at
a moment when their total energy would be lower than that of the stream. The surface energy is
directly proportional to the surface area, so it is sufficient to minimise the area. A droplet with
a radius r has surface area Sk = 4πr2. The droplet corresponds to a part of the stream with
the same volume, which can be approximated as a cylinder with a height h and cross-sectional
area S. Then, since it has the same volume as the droplet,

hS = 4
3πr

3 .

Both bases of the cylinder are adjacent to other parts of the stream, so the bases don’t contribute
to the total surface energy. The surface area of the corresponding open cylinder is then

Sv = 2
√
πSh = 8π

3

√
π
S

r3 .

For Sk < Sv, the droplets are energetically more advantageous than the stream. For this case,
we get

4πr2 = 8π
3

√
π
S

r3 ,

S = 4π
9 r2 .

Now we know the cross-sectional area of the stream at the moment of the split and we need
the depth at which the split happens. The acceleration of the water is equal to the gravity of
Earth, so in a time t, it falls by

x = 1
2gt2 .

The velocity at the time t is v = gt. The cross-sectional area S is related to the velocity and
the volumetric flow rate as vS = qV = q/ϱ, where ϱ is the density of water. By combining these
equations, we get

x = v2

2g
= q2

2gϱ2S2 = 81q2

32π2gϱ2r4
.= 54 m .

Jáchym Bártík
tuaki@fykos.cz
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Problem FH . . . of course it’s drinking water
Jáchym has a well and he constantly draws water from it with a volumetric flow rate qV =
= 0.2 l·s−1. Water is being constantly replenished into the well so the total volume stays constant
at V = 68 m3. However, Jáchym accidentally dropped a piece of radioactive bread into the well,
which dissipated perfectly in the water. The bread contained 3.0 ·1015 radioactive isotopes with
a half-life T = 69 h. Jáchym decided to ignore it and continued to draw water at the original
rate. How long does it take until the radioactive activity of the well drops below A = 1 900 s−1?

Originally, this should have been about Danka’s hair, but Jáchym said it will be about a well.

Radioactive decay obeys the equation

Nr = N0e−λrt ,

where N0 is the initial number of particles and λr = ln 2
T

is the decay constant. The number of
particles that decay in a time dt is then

−dNr = −Ṅrdt = λrN0e−λrtdt = λrNdt .

However, in our case, the radioactive solution is also being diluted by the clean water coming
to the well. After the time dt, the volume qV dt will flow through the well. The number of
radioactive particles leaving the well that way is

qV dt

V
N = −dNv .

Therefore, the equation describing the change in the number of radioactive particles in the well
is

dN = dNr + dNv = −
(

λr + qV

V

)
Ndt = −λNdt .

We now see that the number of particles in the well will again be an exponential function, but
with a different constant. The activity can be calculated as A = λrN , or

A = λrN0e−λt .

From this, we get the resulting time

t = − 1
λ

ln
(

A

λrN0

)
= 1

ln 2
T

+ qV
V

ln
(

N0

A

ln 2
T

)
.= 740 hod .

Jáchym Bártík
tuaki@fykos.cz

Problem GA . . . hole in a bucket
Dodo has a well with a bucket, which has a cylindrical shape - its height is h0 = 32 cm, the
radius of its base is r = 12 cm and its weight is m = 2.7 kg. At the bottom of the bucket, there
is a hole with a cross-section S = 1.0 cm2. Dodo pulls the bucket up from a depth H = 25 m
at a constant speed v = 0.40 m·s−1. Compared to the situation if the bucket wasn’t leaky, how
many times less efficient is this procedure? We are asking about the ratio of works which Dodo
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has to perform to pull a unit amount of water out of the well in both cases.
Jáchym was eating soup with a fork.

Water from the bucket flows out with velocity
√

2hg, where h is the current water level. The
volumetric flow rate is q = S

√
2hg, which can also be written as −V̇ , where V = πr2h is the

volume of water in the bucket. Hence, we get the equation

πr2ḣ = −S
√

2hg ,

which has the solution
h =

(√
h0 − S

πr2

√
g

2 t
)2

.

The time Dodo needs to pull the bucket out is simply calculated as

τ = H

v
.

By substituting t = τ into the previous equation, we verify that all the water does not run out
on the way up, and we find out that the water level in the leaky bucket when Dodo pulls it out
is h1 = 6.75 cm.

The total weight of the bucket with water is m + πr2h. From this, we get the force with
which Dodo must pull

F =
(
m + πr2hϱ

)
g .

Then, the power is P = F v. Work is the integral of power over time

W1 =
∫ τ

0
P dt = mgvτ + πr2ϱgv

∫ τ

0
h(t) dt = mgvτ + πr2ϱgv

(
−πr

2

S

√
2
g

)
1
3

[
h

3
2 (t)
]τ

0
=

= mgH + π
2r4ϱv

√
2g

3S

(
h

3
2
0 − h

3
2
1

)
= 2.638 kJ .

The resulting volume of water that Dodo pulls up is V1 = πr2h1.
In the second case, the situation is much simpler — the force is the same all the time, so

we calculate the work as
W2 =

(
m + πr2h0ϱ

)
gH = 4.211 kJ .

The volume of water also remains the same, specifically V2 = πr2h0.
The solution is the ratio

W1

V1

V2

W2
= W1

W2

h0

h1

.= 2.97 .

If Dodo bought a new bucket, he would be nearly three times more efficient in pumping water
from the well.

Jáchym Bártík
tuaki@fykos.cz
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Problem GB . . . excess heat
Geothermal energy comes from the decay of radioactive elements, from tidal deformations of
the Earth and from the residual heat released by differentiation of the layers of Earth. The
Earth has mass M = 5.97 · 1024 kg and radius R = 6.38 · 103 km. Assume that at the beginning
of its existence, it was a homogeneous sphere. After differentiation, a metallic (predominantly
iron) core with a radius rj = 3.50 · 103 km and a density ϱj = 13 000 kg·m−3 formed within
the Earth. The remainder of the Earth is the mantle, with a constant density. Find the heat
released by this differentiation. Jindra felt like his soles were on fire.

In the problem statement, it was mentioned that we should assume a homogeneous density of
the mantle. First of all, though, we have to calculate it. The volume of a spherical shell with
an inner radius r1 and outer radius r2 is

Vsl = 4
3π
(
r3

2 − r3
1
)

.

The mass of the whole Earth is M = 5.97 · 1024 kg. The mass of the Earth’s core can be
calculated from its radius and density as

Mj = 4
3πr

3
j ϱj = 2.335 · 1024 kg.

Then, the average density of the Earth’s mantle ϱ p can be expressed as

ϱp = M − Mj
4
3π
(
R3 − r3

j
) ,

ϱp = 4.003 · 103 kg·m−3.

Now let’s move on to the calculation of energy. At the beginning, the Earth is a homogeneous
sphere, so its gravitational potential energy is

E1 = −3GM2

5R
,

E1 = −2.237 · 1032 J.

After differentiation, the Earth divides into a core region and a mantle region. Its potential
energy is equal to the sum of the potential energy of the core and the potential energy of the
mantle. According to the shell theorem, the gravitational forces acting on a mass point within
a homogeneous spherical shell cancel each other out. Thus, a mass located at a distance r from
the centre of the Earth is affected only by gravitational force from mass below this radius r. In
other words, the potential energy of the Earth’s core E j is not affected by the presence of the
mantle and is calculated as

Ej = −
3GM2

j

5rj
= −6.237 · 1031 J.

The potential energy of the Earth’s mantle can be calculated using an integral. Let’s place
layers of the mantle on the Earth’s core until we build the entire Earth. Suppose that we have
already created an “Earth seed” with a radius r > r j . This means that in the middle, there is
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the core, and above it is part of the shell with width r − rj. If we bring an infinitesimally thin
spherical shell with a mass dm from infinity, the potential energy changes by

dE = −
G 4

3πr
3
j ϱjdm

r
−

G 4
3π
(
r3 − r3

j
)

ϱpdm

r
.

We can substitute dm = 4πϱpr2dr and we get

dE = −16
3 Gπ2r3

j ϱjϱprdr − 16
3 Gπ2 (r3 − r3

j
)

ϱ2
prdr,

dE = 16
3 Gπ2r3

j ϱp (ϱp − ϱj) rdr − 16
3 Gπ2ϱ2

pr4dr

Since the Earth’s mantle extends between the radii rj and R, its gravitational potential energy
is calculated as

Ep = 16
3 Gπ2r3

j ϱp (ϱp − ϱj)
∫ R

rj

rdr − 16
3 Gπ2ϱ2

p

∫ R

rj

r4dr,

Ep = 8
3Gπ2r3

j ϱp (ϱp − ϱj)
(
R2 − r2

j
)

− 16
15Gπ2ϱ2

p
(
R5 − r5

j
)

,

Ep = −1.903 · 1032 J.

The total potential energy E2 of the Earth after differentiation is the sum of the potential
energy of the core E j and the potential energy of the mantle E p

E2 = Ej + Ep = −2.526 · 1032 J.

At the beginning, the Earth had more potential energy than after differentiation. The heat Q
released by differentiation is their difference

Q = E1 − E2 = 2.9 · 1031 J.

The released heat is 2.9 · 1031 J, which corresponds to “calorific value” 5 MJ·kg−1.

Jindřich Jelínek
jjelinek@fykos.cz

Problem GC . . . parabolic rays
Your task is to find out how the refractive index of the atmosphere should depend on the
height y above the surface, if we want the rays in the atmosphere to travel along parabolic
trajectories y = x2. Neglect the curvature of Earth. Jurčo wants to see sideways.

Using Snell’s law, we should first realise that the refractive index must increase with height.
The material (atmosphere) can be divided into thin horizontal layers with a constant refractive
index. The beam will tilt by a small angle dϑ when moving up a layer. For two adjacent layers
of the atmosphere, we can write Snell’s law as

(n + dn) sin(ϑ + dϑ) = n sin ϑ ,

n sin ϑ + n cos ϑdϑ + dn sin ϑ = n sin ϑ ,
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from which we have
dn

n
= − dϑ

tan ϑ
.

The tangent of the angle between the beam and the vertical is obtained from the tangent of
the parabola y = x2

dy

dx
= 2x = tan(π/2 − ϑ) = cot ϑ = 1

tan ϑ
.

By further differentiating this equation, we get the relationship between dϑ and dx

2dx = − dϑ

sin2 ϑ
,

where the sine squared can be expressed as

sin2 ϑ = 1
cot2 ϑ + 1

sin2 ϑ = 1
4x2 + 1 = 1

4y + 1 .

After substituting sin2 ϑ and dϑ into our form of Snell’s law, we have

dn

n
= 1

2
4dy

4y + 1 ,

and from this, we get the resulting dependence of n on y

n = n0

√
4y + 1
4y0 + 1 .

Róbert Jurčo
robert.jurco@fykos.cz
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